Документ подписан простой алектронной подпись СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

информация о владельце:
ФИО: Макушев Андрей Евгеньевич

федеральное государственное бюджетное образовательное учреждение высшего образования

Должность: Ректор

"Чувашский государственный аграрный университет" ФГБОУ ВО Чувашский ГАУ)

Дата подписания: 07.07.2025 14:07:53

Уникальный програм **Кыйренр**а Механизации, электрификации и автоматизации с/х производства 4c46f2d9ddda3fafb9e57683d11e5a4257b6ddfe

УТВЕРЖДАЮ Проректор по учебной и научной работе

М′ Л.М. Иванова

17.04.2025 г.

Б1.О.29

Процессы и аппараты

рабочая программа дисциплины (модуля)

Направление подготовки 35.03.06 Агроинженерия Направленность (профиль) Машины и оборудование для хранения и переработки сельскохозяйственной продукции

Квалификация Бакалавр

Форма обучения заочная

Общая трудоемкость **53ET**

Часов по учебному плану 180 Виды контроля: в том числе: экзамен зачет

20 аудиторные занятия самостоятельная работа 147 часов на контроль 13

Распределение часов дисциплины по курсам

Курс	3		4		Итого	
Вид занятий	УП	РΠ	УП	РΠ	YIII	010
Лекции	4	4	4	4	8	8
Лабораторные	4	4	4	4	8	8
Практические	4	4			4	4
В том числе инт.			4	4	4	4
Итого ауд.	12	12	8	8	20	20
Контактная работа	12	12	8	8	20	20
Сам. работа	56	56	91	91	147	147
Часы на контроль	4	4	9	9	13	13
Итого	72	72	108	108	180	180

Программу	составил(и	ı):		
канд. техн.	наук, доц.,	Белов	Евгений	Леонидович

При разработке рабочей программы дисциплины (модуля) "Процессы и аппараты" в основу положены:

- 1. Федеральный государственный образовательный стандарт высшего образования бакалавриат по направлению подготовки 35.03.06 Агроинженерия (приказ Минобрнауки России от 23.08.2017 г. № 813).
- 2. Учебный план: Направление подготовки 35.03.06 Агроинженерия Направленность (профиль) Машины и оборудование для хранения и переработки сельскохозяйственной продукции, одобренный Ученым советом ФГБОУ ВО Чувашский ГАУ от 17.04.2025 г., протокол № 14.

Рабочая программа дисциплины (модуля) проходит согласование с использованием инструментов электронной информационно-образовательной среды Университета.

СОГЛАСОВАНО:

Заведующий кафедрой Мардарьев С.Н.

Заведующий выпускающей кафедрой Мардарьев С.Н.

Председатель методической комиссии факультета Гаврилов В.Н.

Директор научно-технической библиотеки Викторова В.А.

	1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ							
1.1	- освоение процессов пищевых производств;							
1.2	- формирование базовых знаний по теоретическим основам процессов, протекающих в пищевой промышленности;							
1.3	- формирование базовых знаний позволяющих проанализировать и рассчитать процесс, определить оптимальные конструктивные параметры аппаратов;							
1.4	- формирование базовых знаний достаточных для самостоятельного критического осмысливания действующих технологий и оборудования;							
1.5	- формирование базовых знаний, дающих возможность для совершенствования передовых систем регулирования и управления технологическими процессами и выходить на оптимальные условия их проведения;							
1.6	1.6 -приобретение навыков для разработки устройств машин и аппаратов, для вычисления их оптимальных размеров энерго- и металлоемкости, их экономической эффективности.							
1.7	Теоретические знания и практические навыки, полученные студентами при изучении дисциплины, должны быть использованы в процессе изучения последующих дисциплин по учебному плану, при подготовке рефератов, курсовых работ, выполнении студенческих научных работ, выпускной квалификационной работы.							

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП						
Цик	л (раздел) ОПОП:	Б1.О					
2.1	Требования к предвар	рительной подготовке обучающегося:					
2.1.1	Информатика и цифров	вые технологии					
2.1.2	Компьютерное проекти	рование					
2.1.3	Материаловедение и те	хнология конструкционных материалов					
2.1.4	Механизация технологи	ических процессов в АПК					
2.1.5							
2.1.6	Учебная практика, эксп	луатационная практика					
2.1.7	Физика						
2.1.8	Инженерная экология						
2.1.9	Основы производства г	продукции животноводства					
2.1.10	Основы производства г	продукции растениеводства					
2.1.11	Химия						
2.2	Дисциплины и практи предшествующее:	ики, для которых освоение данной дисциплины (модуля) необходимо как					
2.2.1	Автоматика						
2.2.2	Монтаж и эксплуатация	я электрооборудования и средств автоматики					
2.2.3	Производственная прав	стика, научно-исследовательская работа					

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-4. Способен реализовывать современные технологии и обосновывать их применение в профессиональной деятельности;

ОПК-4.1 Демонстрирует знание современных технологий в профессиональной деятельности

ОПК-4.2 Обосновывает и реализует современные технологии в соответствии с направленностью профессиональной деятельности

ОПК-5. Способен участвовать в проведении экспериментальных исследований в профессиональной деятельности;

ОПК-5.1 Знает современные методы экспериментальных исследований в профессиональной деятельности

ОПК-5.2 Под руководством специалиста участвует в проведении экспериментальных исследованиях в профессиональной деятельности

В результате освоения дисциплины обучающийся должен

3.1	Знать:
3.1.1	экспериментальные исследования в профессиональной деятельности;
3.1.2	методы экспериментальных исследований в профессиональной деятельности
3.1.3	проведение экспериментальных исследованиях в профессиональной деятельности;
3.1.4	современные технологии и обосновывать их применение в профессиональной деятельности;
3.1.5	современные технологии в профессиональной деятельности

3.1.6	современные технологии в соответствии с направленностью профессиональной деятельности.
3.2	Уметь:
3.2.1	участвовать в проведении экспериментальных исследований в профессиональной деятельности;
3.2.2	под руководством специалиста участвует в проведении экспериментальных исследованиях в профессиональной деятельности
3.2.3	реализовывать современные технологии и обосновывать их применение в профессиональной деятельности.
3.3	Иметь навыки и (или) опыт деятельности:
3.3.1	проведения экспериментальных исследований в профессиональной деятельности;
3.3.2	проведения экспериментальных исследований в профессиональной деятельности;
3.3.3	участия в проведении экспериментальных исследованиях в профессиональной деятельности;
3.3.4	реализации современных технологий и обоснования их применение в профессиональной деятельности;
3.3.5	осуществления современных технологий в профессиональной деятельности
3.3.6	реализации современных технологии в соответствии с направленностью профессиональной деятельности.

4. СТРУКТУР	А И СОДЕР	ЖАНИ	Е ДИСЦИПЛ	ИНЫ (МОДУЛ	(RI		
Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Прак. подг.	Примечание
Раздел 1. Общие положения							
Основные свойства пищевых продуктов и сырья /Ср/	3	2	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Принципы анализа и расчета процессов и аппаратов /Лек/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос
Принципы анализа и расчета процессов и аппаратов /Лаб/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Защита работы
Принципы анализа и расчета процессов и аппаратов /Cp/	3	2	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Моделирование и подобие процессов и аппаратов пищевой технологии. /Ср/	3	2	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Основные свойства пищевых продуктов /Пр/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Отчет
Раздел 2. Механические процессы							
Процессы дробления и измельчения /Лек/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	
Процессы дробления и измельчения /Лаб/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	

Процессы дробления и измельчения /Ср/	3	2	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы резания /Ср/	3	6	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы обработки пищевых материалов давлением /Ср/	3	10	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы классификации (сортирования) зернистых материалов /Cp/	3	10	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы дробления и измельчения /Пр/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	
Раздел 3. Контроль							
/Зачёт/	3	4	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2	0	0	
Раздел 4. Теплообменные процессы							
Основы теплопередачи /Лек/	4	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	
Основы теплопередачи /Лаб/	4	2	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	2	0	Дискуссия
Основы теплопередачи /Ср/	4	8	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы нагревания и охлаждения /Ср/	4	8	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Основы пастеризации и стерилизации /Ср/	4	4	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.

Процессы выпаривания /Ср/ Раздел 5. Биохимические процессы	4	8	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Основы ферментационных	4	1	ОПК-4.1	Л1.1	0	0	
процессов /Лек/	4	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.2Л2.1 Л2.2 Э1 Э2	0		
Основы ферментационных процессов /Ср/	4	10	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальных домашних заданий.
Раздел 6. Массообменные процессы							
Основы теории процессов массообмена /Лек/	4	2	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	2	0	Проблемная лекция
Основы теории процессов массообмена /Ср/	4	11	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы абсорбции /Ср/	4	8	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы адсорбции /Ср/	4	2	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы перегонки и ректификации /Лаб/	4	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальных домашних заданий.
Процессы перегонки и ректификации /Ср/	4	10	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальных домашних заданий.
Процессы сушки /Лаб/	4	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальных домашних заданий.
Процессы сушки /Ср/	4	10	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.

Процессы экстракции /Ср/	4	8	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы кристаллизации и растворения /Ср/	4	4	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Раздел 7. Гидромеханические процессы							
Процессы перемешивания и смешивания /Лек/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	
Процессы перемешивания и смешивания /Cp/	3	4	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы в псевдоожиженном слое /Лаб/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	
Процессы в псевдоожиженном слое /Ср/	3	4	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Классификация неоднородных систем. /Cp/	3	4	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы отстаивания и осаждения /Лаб/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	
Процессы отстаивания и осаждения /Ср/	3	6	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы разделения газовых неоднородных систем /Лек/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	
Процессы разделения газовых неоднородных систем /Cp/	3	4	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	Опрос, оценка выступлений. Проверка индивидуальн ых домашних заданий.
Процессы перемешивания и смешивания /Пр/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	

Процессы центробежного разделения неоднородных /Пр/	3	1	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2 Э1 Э2	0	0	
Раздел 8. Контроль							
/Экзамен/	4	9	ОПК-4.1 ОПК-4.2 ОПК-5.1 ОПК-5.2	Л1.1 Л1.2Л2.1 Л2.2	0	0	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Примерный перечень вопросов к зачету

Введение

- 1. Что изучается в курсе «Процессы и аппараты».
- 2. Когда и где зародилась наука о «Процессах и аппаратах». Кто является его основоположником.
- 3. Что такое производственный процесс. Что такое технологический процесс. Чем они отличаются.
- 4. Что такое аппарат. Что такое машина. Чем они отличаются.
- 5. Какова классификация процессов пищевой промышленности.
- 6. Какие современные технологии применяются в перерабатывающих производствах.
- 7. Какие виды экспериментальных исследований применяются в перерабатывающих производствах.

Опрос 2.

Свойства веществ

- 6. На какие три группы можно разделить свойства веществ.
- 7. Какими величинами характеризуются физические свойства жидкостей и газов.
- 8. Как найти плотность суспензии через массовую долю твердой фазы.
- 9. Как найти плотность суспензии через объемную долю твердой фазы.
- 10. В чем заключается закон внутреннего трения Ньютона.
- 11. Что такое кинематическая вязкость и динамическая вязкость, в каких единицах измеряются эти величины.
- 12. Чем различаются плотность и удельный вес. В каких единицах измеряются эти величины.
- 13. Какими величинами характеризуются сыпучие продукты.
- 14. Что характеризует порозность свободно насыпанного материала.
- 15. Что характеризует степень заполнения свободно насыпанного материала.
- 16. Основные величины, характеризующие теплофизические свойства веществ.
- 17. Массовая доля твердой фазы в соке 0,04, плотность твердых частиц в соке 2100 кг/м3, плотность твердых частиц 2100 кг/м3, плотность осветленного сока 1080 кг/м3, массовая доля твердой фазы в соке 0.04. плотность твердых частиц 2100 кг/м3. Определить объемную долю твердой фазы в соке.
- 18. Плотность неосветленного сока 1101 кг/м, массовая доля твердой фазы в соке 0, 04, плотность твердых частиц 2100 кг/м3. Определить объемную долю твердой фазы в соке
- 19. Объемная доля твердой фазы 21%, вязкость осветленного сока 0,0005 Па.с. Определить вязкость неосветленного сока.
- 20. Объемная доля твердой фазы 5%, вязкость осветленного сока 0,00052 Па... с. Определить вязкость неосветленного сока.
- 21. Относительный удельный вес растительного масла 890 кгс/м3. Определить плотность масла в СИ.
- 22. Определить в СИ плотность диоксида азота при ризб=10 кгс/см2 и t=20oC. Атмосферное давление 760 мм.рт. ст. (1,03 кгс/см2). мольная масса газа 46 кг/кмоль.
- 23. Определить плотность воздуха при вакууме 440 мм.рт. ст. и температуре –40оС. Атмосферное давление принять равным 750 мм.рт. ст. Мольная масса воздуха 28, 8 кг/кмоль.

Принципы анализа и расчета аппаратов

- 24. Напишите основное уравнение кинетики. Что характеризует кинетический коэффициент.
- 25. Что является движущей силой процесса в общем случае, и в частном.
- 26. Как составляется материальный баланс процесса.
- 27. Как составляется энергетический баланс процесса.
- 28. Чем периодический процесс отличается от непрерывного. Назовите их основные характеристики.
- 29. Как происходит изменение температуры (концентрации) в аппарате идеального смешения.
- 30. Как происходит изменение температуры (концентрации) в аппарате идеального вытеснения.
- 31. Как происходит изменение температуры (концентрации) в аппарате промежуточного типа.

Моделирование и подобие процессов пищевых производств

- 32. В чем заключается теоретический путь исследования процесса.
- 33. В чем заключается экспериментальный путь исследования процесса
- 34. В чем заключается моделирование процесса.
- 35. Какие должны соблюдаться условия подобия физических процессов.
- 36. Что такое константы и инварианты подобия.
- 37. Что такое симплексы и комплексы подобия, критерии подобия.
- 38. Назовите основные критерии подобия.
- 39. Что характеризует основной критерий подобия.
- 40. Сформулируйте первую теорему подобия.

- 41. Сформулируйте вторую теорему подобия.
- 42. Сформулируйте третью теорему подобия.
- 43. Какой критерий подобия называют определяющим, какой определяемым.
- 44. Напишите обобщенные критериальные уравнения (уравнения обобщенных переменных).
- 45. Назовите вспомогательные критерии подобия. Каким образом получен каждый критерии.

Опрос 3. Механические процессы

- 46. С какой целью применяется измельчение твердых материалов?
- 47. Какие типы измельчающих машин применяются в промышленности?
- 48. Назовите основные характеристики дробилок и мельниц.
- 49. Перечислите требования предъявляемые к измельчающим машинам.
- 50. К какому виду дробления относятся щековые, гирационные (конусные) дробилки?
- 51. Какова конструкция, принцип действия и область применения щековых дробилок?
- 52. Какова конструкция, принцип действия и область применения гирационных (конусных) дробилок?
- 53. К какому виду дробления относятся молотковые, вальцовые дробилки, дезинтеграторы, дисмембраторы?
- 54. Какова конструкция, принцип действия и область применения молотковых дробилок?
- 55. Какова конструкция, принцип действия и область применения вальцовых дробилок?
- 56. Какова конструкция, принцип действия и область применения дезинтеграторов?
- 57. Какова конструкция, принцип действия и область применения дисмембраторов?
- 58. Какие мельницы применяются для дробления и помола зерна?
- 59. К какому виду измельчения относятся шаровые, вибрационные мельницы?
- 60. Какова конструкция, принцип действия и область применения шаровых мельниц?
- 61. Как влияет частота вращения шаровой мельницы на степень измельчения.
- 62. Какова конструкция, принцип действия и область применения вибрационных мельниц?
- 63. Применимы ли для измельчения в вибрационных мельницах материалы с низкой температурой плавления? Объясните почему?
- 64. Для чего применяют прессование в пищевой промышленности?
- 65. Какое оборудование используют при обработке продуктов прессованием?
- 66. Какова конструкция, принцип действия и область применения обезвоживающих шнековых прессов?
- 67. Какова конструкция, принцип действия и область применения ротационных брикетирующих прессов?
- 68. Для чего предназначен формовочный пресс, каков его принцип работы?
- 69. Что такое фильера?
- 70. Что такое экструзия, ее виды и область применения?
- 71. Какое оборудование применяют для получения экструдированных пищевых продуктов?
- 72. Опишите устройство и принцип действия экструдера.
- 73. Опишите устройство и принцип действия дражировочного гранулятора.

Опрос 4. Гидромеханические процессы

- 74. Частицы каких размеров могут выделены из газовых потоков под действием гравитационных сил?
- 75. Какова конструкция, принцип действия и область применения пылеосадительной камеры?
- 76. В каких аппаратах происходит разделение газов неоднородных смесей под действием инерционных и центробежных сил?
- 77. Какова конструкция, принцип действия и область применения отстойного газохода?
- 78. В чем достоинства циклонного процесса?
- 79. От каких факторов зависит степень очистки газов в циклонах?
- 80. Какова конструкция, принцип действия и область применения циклона?
- 81. Какие фильтры применяют для очистки газовых потоков?
- 82. Какова конструкция, принцип действия и область применения рукавного фильтра?
- 83. Какова конструкция, принцип действия и область применения патронного фильтра?
- 84. В чем заключается мокрая очистка газов? Какова степень очистки?
- 85. Какова конструкция, принцип действия и область применения насадочного скруббера?
- 86. Какова конструкция, принцип действия и область применения пенного скруббера?
- 87. Назовите принцип, на котором основано осаждение в электрическом поле.
- 88. Какие конструкции электрофильтров вам известны?

Опрос 5. Теплообменные процессы

- 89. Какие виды теплоносителей и методы нагревания применяют в пищевых производствах?
- 90. Дайте краткую характеристику насыщенного водяного пара.
- 91. Какие способы нагревания насыщенным водяным паром применяют в пищевых производствах?
- 92. В чем сущность способа нагревания «острым» паром?
- 93. Когда можно применять нагревание «острым» паром? Как определить расход греющего пара?
- 94. Из какого уравнения определяют расход теплоносителя для нагревания?
- 95. В чем сущность способа нагревания «глухим» паром?
- 96. Для чего в схеме «глухого» пара применяется конденсатоотводчик?
- 97. Какие способы нагревания горячей водой применяют в пищевых производствах?
- 98. В каких случаях применяют нагревание дымовыми газами?
- 99. Какие недостатки присущи нагреванию дымовыми газами?
- 100. В чем сущность способа нагревания горячим воздухом и область применения этого способа нагрева?
- 101. Какие способы нагревания электрическим током используют в пищевых производствах?
- 102. В чем сущность способа нагревания электрическим током в печах прямого действия?
- 103. В чем сущность способа нагревания электрическим током в печах косвенного действия?

- 104. В чем преимущества и недостатки способа нагревания электрическим током?
- 105. Какие хладагенты используют для охлаждения газов, паров и жидкостей? Назовите их характеристики.
- 106. Как вычислить расход охлаждающей воды?

Опрос 6. Массообменные процессы

- 107. Какова сущность биохимических процессов?
- 108. Для производства каких продуктов используются биохимические процессы?
- 109. Какова конструкция, принцип действия и область применения ферментатора?
- 110. Каков принцип действия самовсасывающейся мешалки?
- 111. Какова сущность процесса абсорбции?
- 112. Какие схемы абсорбции применяют в технике?
- 113. Какие конструкции абсорберов применяются в промышленности?
- 114. Какова конструкция, принцип действия и область применения поверхностного абсорбера?
- 115. Какова конструкция, принцип действия и область применения пленочного абсорбера?
- 116. Какова конструкция, принцип действия и область применения насадочного абсорбера?
- 117. Какие применяются насадки в абсорберах? Каким требованиям должны удовлетворять насадки?
- 118. При каких режимах могут работать насадочные абсорберы?
- 119. Какова конструкция, принцип действия и область применения тарельчатых барботажных колонн?
- 120. Какова конструкция ситчатых тарелок?
- 121. Какова конструкция клапанных тарелок?
- 122. Какова конструкция, принцип действия и область применения распыливающего абсорбера?
- 123. В чем сущность процесса выщелачивания? Какие компоненты участвуют в процессе выщелачивания?
- 124. Какова конструкция, принцип действия и область применения перколятора?
- 125. Какова конструкция, принцип действия и область применения наклонного двухшнекового диффузионного аппарата?
- 126. Какова конструкция, принцип действия и область применения двухколонного диффузионного аппарата со взвешенным слоем?
- 127. Какова конструкция, принцип действия и область применения ленточного экстрактора?
- 128. Какие методы применяют для разделения жидких однородных смесей? На каких свойствах жидких смесей основаны эти методы разделения
- 129. Что такое простая перегонка? При разделении каких смесей ее применяют?
- 130. Какие разновидности простой перегонки применяются в пищевой промышленности?
- 131. Каков принцип действия и область применения установки для фракционной перегонки?
- 132. Какой способ перегонки называется фракционной перегонкой?
- 133. Каков принцип действия и область применения установки для простой перегонки с дефлегмацией?
- 134. Что такое флегма? Для чего она направляется обратно в куб?
- 135. Каков принцип действия и область применения установки для перегонки с водяным паром?
- 136. Каков принцип действия и область применения установки для молекулярной перегонки?

5.2. Примерный перечень вопросов к экзамену

Общие положения

- 1. Что изучается в курсе "Процессы и аппараты". Классификация основных процессов пищевой технологии.
- 2. Принципы анализа и расчета процессов и аппаратов. Кинетические закономерности процессов. Движущая сила процесса.
- 3. Основные типы процессов и аппаратов, их характеристики. Характер распределения температур в аппаратах идеального смешения, идеального вытеснения в аппаратах промежуточного типа.
- 4. Моделирование и подобие процессов пищевой промышленности. Основные методы изучения процессов. Виды моделирования. Константы, инварианты подобия. Симплексы, комплексы подобия.
- 5. Современные технологии перерабатывающих производств.
- 6. Виды экспериментальных исследований.

Механические процессы

- 1. Процесс дробления. Щековые и конусные дробилки. Область приме¬нения. Основные характеристики аппаратов. Конструкция и принципы работы.
- 2. Процессы прессования. Область применения. Виды прессования.
- 3. Основные характеристики процесса. Уравнение распределения давления прессования.
- 4. Процессы измельчения. Виды резания. Три случая резания лезвием. Основные факторы, характеризующие процесс резания.

Гидромеханические процессы

- 1. Процесс перемешивания. Основные характеристики процесса. Критерий мощности. Режимы перемешивания. Определение частоты вращения мешалки по графической зависимости K=f(Re).
- 2. Процесс осаждения. Материальный баланс процесса. Эффективность разделения. Режимы осаждения. Скорость процесса осаждения. Формула Стокса.
- 3. Псевдоожижение. Гидродинамика процесса. Кривая псевдоожижения. Виды режимов псевдоожижения. Основные технологические параметры псевдоожижения.
- 4. Осаждение под действием центробежной силы. Основные характеристики процесса. Скорость осаждения в центробежных устройствах.
- 5. Фильтрование под действием центробежной силы. Определение величины давления, действующего на стенку барабана.
- 6. Мембранные процессы разделения. Основные характеристики мембран, их свойства. Ультрафильтрация. Схема

разделения раствора обратным осмосом.

Теплообменные процессы

- 1. Основное уравнение теплопередачи. Теплопроводность, конвекция, тепловое излучение. Связь коэффициента теплопередачи с коэф¬фициентами теплопроводности и теплоотдачи.
- 2. Процесс охлаждения. Способы охлаждения. Температурные характеристики хладагентов и теплоносителей.
- 3. Схема однокорпусной выпарной установки. Принцип действия. Материальный и тепловой балансы.
- 4. Основные слагаемые общего расхода пара на выпаривание. Теоретический и удельный расход пара. Расчет однокорпусного выпарного аппарата: тепловая нагрузка, коэффициент теплопередачи при выпаривании.
- 5. Многокорпусные выпарные установки. Схема и принцип действия. Схемы выпаривания. Материальный и тепловой балансы многокорпусной выпарной установки. Коэффициент испарения и самоиспарения. Массообменные процессы
- 1. Сущность процесса массопередачи. Равновесное состояние системы. Диаграмма равновесия. Рабочая линия процесса, движущая сила про¬цесса.
- 2. Масоотдача, механизм процесса. Основное уравнение массоотдачи. Критерии подобия массопередачи.
- 3. Расчет рабочей высоты аппаратов со ступенчатым контактом: иде-альный процесс, реальный процесс.
- 4. Разделение жидких смесей. Идеальные, реальные жидкие смеси. Азеотропные смеси. Азеотропная точка.
- 5. Сущность процесса ректификации. Схема ректификационной установки. Материальный баланс ректификации.
- 6. Сущность процесса абсорбции. Закон Генри. Материальный баланс процесса абсорбции. Изотермы абсорбции. Определение оптимального удельного расхода абсорбента.
- 7. Сущность процесса адсорбции. Виды и характеристика адсорбентов. Механизм процесса. Изменение фронта адсорбции.
- 8. Формы связи влаги с материалом. Кинетика процесса сушки. Материальный и тепловой балансы сушилки.
- 9. Сущность процесса экстракции. Принципиальная схема экстракции. Равновесие в системах жидкость жидкость. Коэффициент распределения. Треугольная диаграмма.
- 10. Схемы экстракции. Экстракция в системе твердое тело жидкость и варианты проведения этого процесса. Конструкция аппаратов для проведения экстракции.
- 11. Сущность процесса кристаллизации. Стадии технологического процесса. Статика процесса. Диаграммы состояния растворов. Скорость кристаллизации и ее изменение во времени. Способы кристаллизации. Биохимические процессы.
- 1. Назначение и применение в пищевой промышленности.
- 2. Кинетика и массообмен ферментационных процессов.
- 3. Аппаратура для проведения процессов ферментации.

5.3. Тематика курсовых работ (курсовых проектов)

Не предусмотрено

5.4. Фонд оценочных средств для проведения текущего контроля

Перечень вопросов, выносимых на опрос (коллоквиум)

Опрос 1.

Введение

- 1. Что изучается в курсе «Процессы и аппараты».
- 2. Когда и где зародилась наука о «Процессах и аппаратах». Кто является его основоположником.
- 3. Что такое производственный процесс. Что такое технологический процесс. Чем они отличаются.
- 4. Что такое аппарат. Что такое машина. Чем они отличаются.
- 5. Какова классификация процессов пищевой промышленности.

Опрос 2.

Свойства веществ

- 6. На какие три группы можно разделить свойства веществ.
- 7. Какими величинами характеризуются физические свойства жидкостей и газов.
- 8. Как найти плотность суспензии через массовую долю твердой фазы.
- 9. Как найти плотность суспензии через объемную долю твердой фазы.
- 10. В чем заключается закон внутреннего трения Ньютона.
- 11. Что такое кинематическая вязкость и динамическая вязкость, в каких единицах измеряются эти величины.
- 12. Чем различаются плотность и удельный вес. В каких единицах измеряются эти величины.
- 13. Какими величинами характеризуются сыпучие продукты.
- 14. Что характеризует порозность свободно насыпанного материала.
- 15. Что характеризует степень заполнения свободно насыпанного материала.
- 16. Основные величины, характеризующие теплофизические свойства веществ.
- 17. Массовая доля твердой фазы в соке 0,04, плотность твердых частиц в соке 2100 кг/м3, плотность твердых частиц 2100 кг/м3, плотность осветленного сока 1080 кг/м3, массовая доля твердой фазы в соке 0.04. плотность твердых частиц 2100 кг/м3. Определить объемную долю твердой фазы в соке.
- 18. Плотность неосветленного сока 1101 кг/м, массовая доля твердой фазы в соке 0, 04, плотность твердых частиц 2100 кг/м3. Определить объемную долю твердой фазы в соке
- 19. Объемная доля твердой фазы 21%, вязкость осветленного сока 0,0005 Па.с. Определить вязкость неосветленного сока.
- 20. Объемная доля твердой фазы 5%, вязкость осветленного сока 0,00052 Па... с. Определить вязкость неосветленного сока.
- 21. Относительный удельный вес растительного масла 890 кгс/м3. Определить плотность масла в СИ.
- 22. Определить в СИ плотность диоксида азота при ризб=10 кгс/см2 и t=20oC. Атмосферное давление 760 мм.рт. ст.

(1,03 кгс/см2). мольная масса газа 46 кг/кмоль.

23. Определить плотность воздуха при вакууме 440 мм.рт. ст. и температуре –40оС. Атмосферное давление принять равным 750 мм.рт. ст. Мольная масса воздуха 28, 8 кг/кмоль.

Принципы анализа и расчета аппаратов

- 24. Напишите основное уравнение кинетики. Что характеризует кинетический коэффициент.
- 25. Что является движущей силой процесса в общем случае, и в частном.
- 26. Как составляется материальный баланс процесса.
- 27. Как составляется энергетический баланс процесса.
- 28. Чем периодический процесс отличается от непрерывного. Назовите их основные характеристики.
- 29. Как происходит изменение температуры (концентрации) в аппарате идеального смешения.
- 30. Как происходит изменение температуры (концентрации) в аппарате идеального вытеснения.
- 31. Как происходит изменение температуры (концентрации) в аппарате промежуточного типа.

Моделирование и подобие процессов пищевых производств

- 32. В чем заключается теоретический путь исследования процесса.
- 33. В чем заключается экспериментальный путь исследования процесса
- 34. В чем заключается моделирование процесса.
- 35. Какие должны соблюдаться условия подобия физических процессов.
- 36. Что такое константы и инварианты подобия.
- 37. Что такое симплексы и комплексы подобия, критерии подобия.
- 38. Назовите основные критерии подобия.
- 39. Что характеризует основной критерий подобия.
- 40. Сформулируйте первую теорему подобия.
- 41. Сформулируйте вторую теорему подобия.
- 42. Сформулируйте третью теорему подобия.
- 43. Какой критерий подобия называют определяющим, какой определяемым.
- 44. Напишите обобщенные критериальные уравнения (уравнения обобщенных переменных).
- 45. Назовите вспомогательные критерии подобия. Каким образом получен каждый критерии.

Опрос 3. Механические процессы

- 46. С какой целью применяется измельчение твердых материалов?
- 47. Какие типы измельчающих машин применяются в промышленности?
- 48. Назовите основные характеристики дробилок и мельниц.
- 49. Перечислите требования предъявляемые к измельчающим машинам.
- 50. К какому виду дробления относятся щековые, гирационные (конусные) дробилки?
- 51. Какова конструкция, принцип действия и область применения щековых дробилок?
- 52. Какова конструкция, принцип действия и область применения гирационных (конусных) дробилок?
- 53. К какому виду дробления относятся молотковые, вальцовые дробилки, дезинтеграторы, дисмембраторы?
- 54. Какова конструкция, принцип действия и область применения молотковых дробилок?
- 55. Какова конструкция, принцип действия и область применения вальцовых дробилок?
- 56. Какова конструкция, принцип действия и область применения дезинтеграторов?
- 57. Какова конструкция, принцип действия и область применения дисмембраторов?
- 58. Какие мельницы применяются для дробления и помола зерна?
- 59. К какому виду измельчения относятся шаровые, вибрационные мельницы?
- 60. Какова конструкция, принцип действия и область применения шаровых мельниц?
- 61. Как влияет частота вращения шаровой мельницы на степень измельчения.
- 62. Какова конструкция, принцип действия и область применения вибрационных мельниц?
- 63. Применимы ли для измельчения в вибрационных мельницах материалы с низкой температурой плавления? Объясните почему?
- 64. Для чего применяют прессование в пищевой промышленности?
- 65. Какое оборудование используют при обработке продуктов прессованием?
- 66. Какова конструкция, принцип действия и область применения обезвоживающих шнековых прессов?
- 67. Какова конструкция, принцип действия и область применения ротационных брикетирующих прессов?
- 68. Для чего предназначен формовочный пресс, каков его принцип работы?
- 69. Что такое фильера?
- 70. Что такое экструзия, ее виды и область применения?
- 71. Какое оборудование применяют для получения экструдированных пищевых продуктов?
- 72. Опишите устройство и принцип действия экструдера.
- 73. Опишите устройство и принцип действия дражировочного гранулятора.

Опрос 4. Гидромеханические процессы

- 74. Частицы каких размеров могут выделены из газовых потоков под действием гравитационных сил?
- 75. Какова конструкция, принцип действия и область применения пылеосадительной камеры?
- 76. В каких аппаратах происходит разделение газов неоднородных смесей под действием инерционных и центробежных сил?
- 77. Какова конструкция, принцип действия и область применения отстойного газохода?
- 78. В чем достоинства циклонного процесса?
- 79. От каких факторов зависит степень очистки газов в циклонах?
- 80. Какова конструкция, принцип действия и область применения циклона?
- 81. Какие фильтры применяют для очистки газовых потоков?
- 82. Какова конструкция, принцип действия и область применения рукавного фильтра?

- 83. Какова конструкция, принцип действия и область применения патронного фильтра?
- 84. В чем заключается мокрая очистка газов? Какова степень очистки?
- 85. Какова конструкция, принцип действия и область применения насадочного скруббера?
- 86. Какова конструкция, принцип действия и область применения пенного скруббера?
- 87. Назовите принцип, на котором основано осаждение в электрическом поле.
- 88. Какие конструкции электрофильтров вам известны?

Опрос 5. Теплообменные процессы

- 89. Какие виды теплоносителей и методы нагревания применяют в пищевых производствах?
- 90. Дайте краткую характеристику насыщенного водяного пара.
- 91. Какие способы нагревания насыщенным водяным паром применяют в пищевых производствах?
- 92. В чем сущность способа нагревания «острым» паром?
- 93. Когда можно применять нагревание «острым» паром? Как определить расход греющего пара?
- 94. Из какого уравнения определяют расход теплоносителя для нагревания?
- 95. В чем сущность способа нагревания «глухим» паром?
- 96. Для чего в схеме «глухого» пара применяется конденсатоотводчик?
- 97. Какие способы нагревания горячей водой применяют в пищевых производствах?
- 98. В каких случаях применяют нагревание дымовыми газами?
- 99. Какие недостатки присущи нагреванию дымовыми газами?
- 100. В чем сущность способа нагревания горячим воздухом и область применения этого способа нагрева?
- 101. Какие способы нагревания электрическим током используют в пищевых производствах?
- 102. В чем сущность способа нагревания электрическим током в печах прямого действия?
- 103. В чем сущность способа нагревания электрическим током в печах косвенного действия?
- 104. В чем преимущества и недостатки способа нагревания электрическим током?
- 105. Какие хладагенты используют для охлаждения газов, паров и жидкостей? Назовите их характеристики.
- 106. Как вычислить расход охлаждающей воды?

Опрос 6. Массообменные процессы

- 107. Какова сущность биохимических процессов?
- 108. Для производства каких продуктов используются биохимические процессы?
- 109. Какова конструкция, принцип действия и область применения ферментатора?
- 110. Каков принцип действия самовсасывающейся мешалки?
- 111. Какова сущность процесса абсорбции?
- 112. Какие схемы абсорбции применяют в технике?
- 113. Какие конструкции абсорберов применяются в промышленности?
- 114. Какова конструкция, принцип действия и область применения поверхностного абсорбера?
- 115. Какова конструкция, принцип действия и область применения пленочного абсорбера?
- 116. Какова конструкция, принцип действия и область применения насадочного абсорбера?
- 117. Какие применяются насадки в абсорберах? Каким требованиям должны удовлетворять насадки?
- 118. При каких режимах могут работать насадочные абсорберы?
- 119. Какова конструкция, принцип действия и область применения тарельчатых барботажных колонн?
- 120. Какова конструкция ситчатых тарелок?
- 121. Какова конструкция клапанных тарелок?
- 122. Какова конструкция, принцип действия и область применения распыливающего абсорбера?
- 123. В чем сущность процесса выщелачивания? Какие компоненты участвуют в процессе выщелачивания?
- 124. Какова конструкция, принцип действия и область применения перколятора?
- 125. Какова конструкция, принцип действия и область применения наклонного двухшнекового диффузионного аппарата?
- 126. Какова конструкция, принцип действия и область применения двухколонного диффузионного аппарата со взвешенным слоем?
- 127. Какова конструкция, принцип действия и область применения ленточного экстрактора?
- 128. Какие методы применяют для разделения жидких однородных смесей? На каких свойствах жидких смесей основаны эти методы разделения
- 129. Что такое простая перегонка? При разделении каких смесей ее применяют?
- 130. Какие разновидности простой перегонки применяются в пищевой промышленности?
- 131. Каков принцип действия и область применения установки для фракционной перегонки?
- 132. Какой способ перегонки называется фракционной перегонкой?
- 133. Каков принцип действия и область применения установки для простой перегонки с дефлегмацией?
- 134. Что такое флегма? Для чего она направляется обратно в куб?
- 135. Каков принцип действия и область применения установки для перегонки с водяным паром?
- 136. Каков принцип действия и область применения установки для молекулярной перегонки?

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)								
6.1. Рекомендуемая литература								
6.1.1. Основная литература								
Авторы, составители	Заглавие	Издательство, год	Колич-во					

	Авторы, составители	Заглавие	Издательство, год	Колич-во				
Л1.1	Остриков А. Н., Василенко В. Н., Фролова Л. Н., Терехина А. В.	Процессы и аппараты. Расчет и проектирование аппаратов для тепловых и тепломассообменных процессов: учебное пособие	Санкт-Петербург: Лань, 2022	Электрон ный ресурс				
Л1.2	Разаков М. А.	Процессы и аппараты пищевых производств. Лабораторный практикум: учебное пособие для вузов	Санкт-Петербург: Лань, 2024	Электрон ный ресурс				
6.1.2. Дополнительная литература								
	Авторы, составители	Заглавие	Издательство, год	Колич-во				
Л2.1	Плаксин Ю. М., Малахов Н. Н., Ларин В. А.	Процессы и аппараты пищевых производств: учебник	М.: КолосС, 2008	20				
Л2.2	Кавецкий Г. Д., Васильев Б.В., Гусева Г. А.	Процессы и аппараты пищевой технологии: учебник	М.: Колос, 2000	44				
	6.2. Переч	ень ресурсов информационно-телекоммуникационной сети '	'Интернет''					
Э1	Московский государственный университет пищевых производств Министерства образования и науки Российской Федерации. Лекции по курсам «Процессы и аппараты пищевых производств с основами гидравлики»							
Э2	Электронные книги по	пищевой промышленности						
	.	6.3.1 Перечень программного обеспечения						
		SuperNovaReaderMagnifier						
	OC Windows XP							
	-	bCad Витрина						
		Office 2007 Suites						
	MozillaFirefox							
	MozillaThinderbird							
6.3.1.7	7-Zip							
		6.3.2 Перечень информационных справочных систем						
6.3.2.1	Электронная библиотечная система издательства «Лань». Полнотекстовая электронная библиотека. Индивидуальный неограниченный доступ через фиксированный внешний IP адрес академии неограниченному количеству пользователей из любой точки, в которой имеется доступ к сети Интернет.http://e.lanbook.com							
6.3.2.2	Электронный периодический справочник «Система ГАРАНТ». Полнотекстовый, обновляемый. Доступ по локальной сети академии							

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)					
Аудитория	Вид работ	Назначение	Оснащенность		
1-506	Лаб	Учебная аудитория	Доска ученическая настенная трехэлементная, столы (15 шт.), стулья (23 шт.), стенды (3 шт.), тренажерно-диагностичекий комплекс «Кондиционер», тренажерно-диагностичекий комплекс «Холодильник», тестораскаточная машина Ітрегіа, фильтр комбинированный, Тестомес Fimar 7/S		
1-502	Лек	Учебная аудитория	Доска ученическая настенная трехэлементная (1 шт.), демонстрационное оборудование (экран с электроприводом СЕНА ЕсМаster Electric 180*180 (1 шт.), ноутбук, проектор) и учебно-наглядные пособия, кафедра лектора настольная (1 шт.), стол ученический 4-х местный на металлокаркасе (26 шт.), стул полумягкий (1 шт.), скамейка 4-х местная на металлокаркасе (25 шт.), настенные плакаты и стенды (9 шт.)		
1-500	СР	Учебная аудитория	Доска ученическая настенная трехэлементная (1 шт.), демонстрационное оборудование (экран с электроприводом СЕНА ЕсМаster Electric 180*180 (1 шт.), ноутбук, проектор) и учебно-наглядные пособия, стол преподавательский (1 шт.), кафедра лектора настольная (1 шт.), стол ученический 4-х местный на металлокаркасе (26 шт.), стул полумягкий (1 шт.), скамейка 4-х местная на металлокаркасе (27 шт.)		

123		Помещение для самостоятельной работы	Компьютерная техника с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду организации(19 шт.), столы (17 шт.), компьютерный стол 6-и местный (3 шт.), стулья ученические (34 шт.), стулья п/м (18 шт.), стеллажи с литературой, видеоувеличитель Optelec Wide Screen (1 шт.)
1-204		Помещение для самостоятельной работы	Столы (28 шт.), стулья (48 шт.), шкаф и стеллажи с литературой, компьютерная техника с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду организации(4 шт.).
1-506	Пр	Учебная аудитория	Доска ученическая настенная трехэлементная, столы (15 шт.), стулья (23 шт.), стенды (3 шт.), тренажерно-диагностичекий комплекс «Кондиционер», тренажерно-диагностичекий комплекс «Холодильник», тестораскаточная машина Імрегіа, фильтр комбинированный, Тестомес Fimar 7/S

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Спецификой заочной формы обучения является преобладающее количество часов самостоятельной работы по сравнению с аудиторными занятиями, поэтому методика изучения курса предусматривает наряду с лекциями, лабораторным и практическими занятиями, организацию самостоятельной работы студентов, проведение консультаций, руководство докладами студентов для выступления на научно-практических конференциях, осуществление текущего, промежуточного форм контроля.

Студенты, изучающие дисциплину «Процессы и аппараты», должны обладать навыками работы с учебной литературой и другими информационными источниками, в том числе интернет-сайтами, а также владеть основными методами, техникой и технологией сбора и обработки информации.

Самостоятельная работа студентов заочной формы обучения должна начинаться с ознакомления с рабочей программой дисциплины, в которой перечислены основная и дополнительная литература, учебно-методические задания необходимые для изучения дисциплины и работы на лабораторных, практических занятиях.

Преподаватель в процессе аудиторных занятий освещает основные ключевые темы дисциплины и обращает внимание студентов на то, что они должны вспомнить из ранее полученных знаний. Изучение каждой темы следует начинать с внимательного ознакомления с набором вопросов. Они ориентируют студента, показывают, что он должен знать по данной теме. Следует иметь в виду, что учебник или учебное пособие имеет свою логику построения: одни авторы более широко, а другие более узко рассматривают ту или иную проблему. При изучении любой темы рабочей программы следует постоянно отмечать, какие вопросы (пусть в иной логической последовательности) рассмотрены в данной главе учебника, учебного пособия, а какие опущены. По завершении работы над учебником должна быть ясность в том, какие темы, вопросы программы учебного курса вы уже изучили, а какие предстоит изучить по другим источникам. В случае возникших затруднений в понимании учебного материала следует обратиться к другим источникам, где изложение может оказаться более доступным.

Понимание и усвоение содержания курса невозможно без четкого знания основных терминов и понятий, используемых в данной дисциплине по каждой конкретной теме. Для этого студент должен использовать определения новых терминов, которые давались на лекции, а также в рекомендованных учебных и информационных материалах.

Современные средства связи позволяют строить взаимоотношения с преподавателем и во время самостоятельной работы с помощью интернет-видео-связи, а не только во время аудиторных занятий и консультаций. Для продуктивного общения студенту необходимо владеть навыками логичного, последовательного и понятного изложения своего вопроса. Желательно, чтобы студент заранее написал электронное письмо, в котором перечислил интересующие его вопросы или вопросы, изучение которых представляется ему затруднительным. Это даст возможность преподавателю оперативно ответить студенту по интернет-связи и более качественно подготовиться к последующим занятиям.

Необходимо отметить, что самостоятельная работа с литературой и интернет-источниками не только полезна как средство более глубокого изучения любой дисциплины, но и является неотъемлемой частью будущей профессиональной деятельности выпускника бакалавриата.

приложения

дополнения и изменения

в 20____/20___ учебном году

Актуализированная рабочая программа рассмотрена и одобрена на заседании от	выпускающей	кафедры, п	ротокол №
Заведующий выпускающей кафедрой			
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ в 20/20 учебном году			
Актуализированная рабочая программа рассмотрена и одобрена на заседании от	выпускающей	кафедры, п	ротокол №
Заведующий выпускающей кафедрой			
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ в 20/20 учебном году			
Актуализированная рабочая программа рассмотрена и одобрена на заседании от	выпускающей	кафедры, п	ротокол №
Заведующий выпускающей кафедрой			
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ в 20/20 учебном году			
Актуализированная рабочая программа рассмотрена и одобрена на заседании от	выпускающей	кафедры, п	ротокол №
Заведующий выпускающей кафедрой			
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ в 20/20 учебном году			
Актуализированная рабочая программа рассмотрена и одобрена на заседании от	выпускающей	кафедры, п	ротокол №
Заведующий выпускающей кафедрой			
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ в 20/20 учебном году			
Актуализированная рабочая программа рассмотрена и одобрена на заседании от	выпускающей	кафедры, п	ротокол №
Заведующий выпускающей кафедрой			