Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Макушер Андрей Евгеньевич государственное бюджетное образовательное учреждение Должность: Ректор Дата подписания: 08.08.2023 15:07:13

Уникальный программный ключ:

высшего образования

4c46f2d9ddda3fafb9e57683d111534257b6ddfeй государственный аграрный университет»

ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ АВТОМОБИЛЕЙ И ТРАКТОРОВ

Задание и методическое руководство к курсовому проектированию

УДК 651.51.8 (075.8)

ББК 65.050

Рецензент: канд. техн. наук, доцент кафедры технический сервис Григорьев A.O.

Энергетические установки автомобилей и тракторов: Задание и методическое руководство к курсовому проектированию /Сост. С.С. Алатырев. – Чебоксары: ФГБОУ ВО Чувашский ГАУ, 2023. – 70 с.

В пособии излагается методика теплового и динамического расчетов автомобильных и тракторных двигателей, а также расчета деталей шатуннопоршневой группы на прочность и обоснование технических параметров их систем смазки и охлаждения.

Предназначается в качестве методического пособия для студентов очного и заочного обучения специальности 23.05.01 Наземные транспортнотехнологические средства (специализация – Автомобили и тракторы).

Рассмотрено и одобрено методической комиссией инженерного факультета ФГБОУ ВО Чувашский ГАУ (протокол № 8 от «20» апреля 2023 г.)

[©] ФГБОУ ВО Чувашский ГАУ, 2023

[©] С.С. Алатырев, 2023

ПРЕДИСЛОВИЕ

Целью настоящего курсового проекта является закрепление знаний, полученных студентами при изучении дисциплины «Энергетические установки автомобилей и тракторов».

Курсовой проект состоит из четырех частей.

В первой части проекта требуется произвести тепловой расчет двигателя в режиме максимальной мощности, составить тепловой баланс, построить индикаторную диаграмму, рассчитать его скоростную характеристику.

Вторая часть работы посвящена силовому анализу работы кривошипношатунного механизма (КШМ). Предусматривает определение сил и моментов, действующих на детали КШМ, построение графиков их изменения в течение одного цикла в цилиндрах двигателя.

Третья часть включает расчет на прочность деталей КШМ: поршня, поршневого кольца, поршневого пальца и стержня шатуна на основе результатов теплового и динамического расчетов.

В четвертой части работы производится расчет параметров двух обслуживающих систем двигателя: смазки и охлаждения.

Ориентировочно объем курсового проекта составит до 20 страниц пояснительной записки формата A4, 3 листа графической части, в том числе 1 лист (формата A1) выделяется для иллюстрации результатов теплового и динамического расчетов, 1 лист (формата A1) — для изображения систем смазки и охлаждения двигателя, 1 лист (формата A1) — схемы для компоновки механизма КШМ.

Исходные данные для курсового проекта студент выбирает из табл. 1 в соответствии с двумя последними цифрами номера зачетной книжки и заносит их в табл. 2.

1 ЗАДАНИЕ НА КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Провести тепловой и динамический расчет двигателя внутреннего сгорания, а также прочностной расчет деталей кривошипно-шатунного механизма и расчет систем смазки и охлаждения двигателя с целью обоснования их параметров при исходных данных, приведенных ниже. По результатам расчетов оформить графический материал по перечню, приведенному в Предисловии.

Таблица 1 - Задание на курсовой проект по дисциплине «Энергетические установки автомобилей и тракторов»

№	Последняя цифра шифра зачетной книжки	1	2	3	4	5	6	7	8	9	0		
1.	Тип двигателя и его назначение		Бензи	ІНОВЫ	ый двигатель Дизельный двигатели								
2.	Диаметр цилиндра D , м	0,092	0,092	0,079	0,079	0,082	0,082	0,110	0,110	0,130	0,130		
3.	Ход поршня S , м	0,092	0,086	0,080	0,080	0,070	0,070	0,115	0,115	0,140	0,140		
4.	Отношение радиу- са кривошипа к длине шатуна λ	0,270	0,270	0,275	0,275	0,280	0,280	0,267	0,267	0,264	0,264		
5.	Число цилиндров <i>i</i>	P-4	P-4	P-4	P-4	P-4	P-4	V-8	V-8	V-8	V-8		
6.	Частота вращения номинальная $n_{ном}$, об/мин	4500	5200	5600	5600	5800	5800	2500	2500	2100	2100		
7.	Число клапанов на цилиндр $i_{\kappa n}$	2	4	2	4	2	4	2	2	2	2		
8.	Средняя скорость заряда в клапане $w_{\kappa n}$, м/с	100	70	100	70	100	70	60	60	55	55		
9.	Коэффициент из- бытка воздуха α	0,95	1,0	0,95	1,0	0,95	1,0	1,4	1,6	1,4	1,6		
10.	Повышение давления в компрессоре π_{κ}	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,7	1,0	1,7		

Продолжение таблицы 1

							11	родол	7110111110	таолг	щи
11.	Подогрев при впуске ΔT , град.	0	5	-3	10	-5	15	15	20	17	25
12.	Коэффициент со- противления при впуске, $\beta^2+\xi$	2,3	2,4	2,3	2,4	2,3	2,4	2,4	2,4	2,4	2,4
13.	Давление остаточного газа P_r , МПа	0,110	0,108	0,110	0,105	0,110	0,105	0,104	0,174	0,104	0,174
14.	Коэффициент очистки остаточных газов ϕ_{04}	0,93	0,92	0,93	0,92	0,93	0,92	0,97	0,94	0,97	0,94
15.	Коэффициент дозарядки $\phi_{д3}$	1,02	1,05	1,02	1,05	1,02	1,05	1,02	1,06	1,02	1,06
16.	Предпоследняя цифра шифра шифра четной книжки для вариантов 1-6	1	2	3	4	5	6	7	8	9	0
17.	Степень сжатия ε	8,8	8,9	9,0	9,1	9,2	9,3	9,4	9,6	9,8	10,0
18.	Предпоследняя цифра шифра шифра а-четной книжки для вариантов 7-0	1	2	3	4	5	6	7	8	9	0
19.	Степень сжатия ε	16,5	16,6	16,7	16,8	16,9	17,0	17,1	17,2	17,3	17,4

1.1 Справочные данные и принятые обозначения

Массовые доли углерода, водорода в 1 кг бензина: С = 0,855 кг, $\mathrm{H} = 0,145~\mathrm{kr}.$

Масса 1 кмоль топлива (бензина) $\mu_{\rm r}$ = 190 кг/кмоль.

Низшая теплота сгорания бензина $H_{\rm H}$ = 44000 кДж/кг.

Массовые доли углерода, водорода, кислорода в 1 кг дизельного топлива: $C=0.870~{\rm kr},\,H=0.126~{\rm kr},\,O=0.004~{\rm kr}.$

Масса 1 кмоля топлива (дизельного) $\mu_{\rm T} = 190$ кг/кмоль.

Низшая теплота сгорания дизтоплива $H_{\rm H}$ = 42000 кДж/кг.

Параметры окружающей атмосферы $P_0 = 0,1$ МПа, $T_0 = 293$ К.

Охлаждение воздуха после компрессора $\Delta T_{oxn} = 0$ K.

Молекулярная масса воздуха $\mu_B = 28,97$ кг/кмоль.

Удельная газовая постоянная воздуха $R_{\rm B} = 287 \ {\rm кДж/(кг \cdot K)}$

Принятые обозначения:

- 1) D диаметр цилиндра, м;
- 2) S = 2R ход поршня, м;
- 3) R радиус кривошипа, м;
- 4) ВМТ верхняя мертвая точка;
- 5) НМТ нижняя мертвая точка;
- 6) τ число тактов в цикле;
- 7) φ угол поворота кривошипа (отсчет от BMT такта впуска);

8)
$$V_{
m h}=rac{\pi D^2}{4}S_{
m h}$$
 - рабочий объем цилиндра, м³;

9) $V_a = V_h + V_c$ - полный объем цилиндра, м³;

10)
$$V_{\rm c} = \frac{V_{\rm h}}{{\cal E}-1}$$
 - объем камеры сгорания, м³;

11)
$$\mathcal{E} = \frac{V_{\mathrm{a}}}{V_{\mathrm{c}}}$$
 - степень сжатия;

12)
$$\rho = \frac{V_{\rm z}}{V_{\rm c}}$$
 - степень предварительного расширения для дизеля;

- 13) P_0 , T_0 , ρ_0 давление, температура, плотность атмосферы;
- 14) $P_{\rm k},~T_{\rm k}$, $\rho_{\rm k}$ давление, температура, плотность окружающей среды при наддуве;
 - 15) π_k степень повышения давления при наддуве;
 - 16) ΔT подогрев воздуха во впускном тракте, К;
 - 17) $\Delta T_{\text{охл}}$ охлаждение воздуха за компрессором, К;
 - 18) $P_{\rm a},\,T_{\rm a},\,\rho_{\rm a}$ давление, температура, плотность в начале сжатия;
 - 19) $P_{\rm c}$, $T_{\rm c}$, $\rho_{\rm c}$ давление, температура и плотность в конце сжатия;

- 20) $P_{\rm z}$, $T_{\rm z}$, $\rho_{\rm z}$ давление, температура, плотность газов в конце сгорания;
- 21) $P_{\rm b}$, $T_{\rm b}$, $\rho_{\rm b}$ те же величины в конце расширения;
- 22) $P_{\rm r}$, $T_{\rm r}$, $\rho_{\rm r}$ давление, температура и плотность остаточного газа;
- 23) M_0 количество свежего воздуха в цилиндре, кмоль/кг;
- 24) M_1 количество свежей смеси в цилиндре на кг топлива;
- 25) M_2 количество продуктов сгорания на кг топлива;
- 26) $M_{\rm r}$ количество остаточного газа в цилиндре на кг топлива;
- 27) l_0 теоретически необходимое количество воздуха (кг) для сгорания 1 кг топлива;
- 28) L_0 теоретически необходимое количество молей воздуха для сгорания 1 кг топлива;
 - 29) α коэффициент избытка воздуха;
 - 30) $\Delta P_{\rm a}$ аэродинамические потери во впускном тракте, МПа;
 - 31) $\eta_{\rm V}$ коэффициент наполнения;
 - 32) $\gamma_{\mathrm{r}} = \frac{M_{r}}{M_{1}}$ коэффициент остаточного газа;
- 33) $\varphi_{\rm дз}$ коэффициент дозарядки, учитывающий поступление свежего заряда за счет инерционного наддува;
- 34) $\phi_{\text{оч}}$ коэффициент очистки цилиндра, учитывающий уменьшение массы остаточного газа за счет продувки цилиндра;
 - 35) n_1 , n_2 , показатели политроп сжатия и расширения в цилиндре;
 - 36) $n_{\rm k}$ показатель политропы сжатия в турбокомпрессоре;
 - 37) $U_{\alpha}^{''}$ внутренняя энергия продуктов сгорания, кДж/кмоль;
 - 38) $I_{\alpha}^{''}$ энтальпия продуктов сгорания, кДж/кмоль;
 - 39) $\lambda_{\scriptscriptstyle \Gamma}$ степень повышения давления при сгорании;
 - 40) *L* длина шатуна, м;
 - 41) $\lambda = \frac{R}{L}$ отношение радиуса кривошипа к длине шатуна;

- 42) $m_{\rm II}$ масса поршня, кг;
- 43) $F_{\rm п}$ площадь поршня, м²;
- 44) ${\bf m}_{_{\rm II}}^{'}={{\bf m}_{_{\rm II}}\over F_{_{\rm II}}}$ удельная масса поршня, кг/м²;
- 45) $m_{\rm m}$ масса шатуна, кг;
- 46) ${
 m m}_{_{
 m III}}^{'}={
 m m}_{_{
 m III}}^{}$ удельная масса шатуна, кг/м²;
- 47) $m_j^{'} = m_n^{'} + 0,275 m_m^{'}$ удельные массы КШМ, совершающие возвратно -поступательное движение, кг/м²;
- 48) $m_R^{'}=m_{_{\!H\!H\!H}}^{'}+m_{_{\!H\!K}}^{'}+2m_{_{\!H\!H\!P}}^{'}$ -удельные массы, совершающие вращательное движение, кг/м²;
 - 49) $\mathbf{m}_{\text{ппп}}^{\prime}$ удельная масса шатунной шейки, кг/м²;
- 50) $\mathbf{m}_{\hat{\mathbf{u}}\,\hat{\mathbf{I}}\,\hat{\mathbf{d}}}^{/}=\mathbf{m}_{\hat{\mathbf{u}}}^{/}\,\frac{\rho_{\hat{\mathbf{u}}}}{R}$ удельная масса щеки коленвала, приведенная к радиусу кривошипа, кг/м²;
 - 51) ρ_{m} расстояние центра масс щеки от оси вращения, м;
 - 52) $\omega = \pi n/30$ угловая скорость, рад/с;
- 53) $n_{\text{ном}}$ номинальная частота вращения коленчатого вала, соответствующая максимальной мощности двигателя, мин⁻¹;
 - 54) τ тактность двигателя.

Таблица 2 - Исходные данные для теплового расчета двигателя

№	Исходные параметры	Значения
1	Тип двигателя	
2	Диаметр цилиндра D, м	
3	Ход поршня S, м	
4	Число цилиндров і	
5	Частота вращения номинальная n _{ном} , об/мин	

Продолжение таблицы 2

6	Число клапанов на цилиндр ікл
7	Тип охлаждения
8	Давление окружающей атмосферы Р(), МПа
9	Температура окружающей атмосферы То, К
10	Средняя скорость заряда в клапане w _{кл} , м/с
11	Коэффициент сопротивления при впуске $\xi+\beta^2$
12	Коэффициент избытка воздуха α
13	Коэффициент дозарядки фдоз
14	Коэффициент очистки фоч
15	Повышение давления в компрессоре при наддуве π_{κ}
16	Охлаждение воздуха после компрессора $\Delta T_{\text{охл}}$, К
17	Отношение радиуса кривошипа к длине шатуна λ
18	Состав топлива
19	Низшая теплота сгорания Н _н , кДж/кг
20	Степень сжатия є
21	Давление остаточного газа P _r , МПа
22	Температура остаточного газа T _г , К
23	Подогрев при впуске ΔΤ, К
24	Угол начала открытия впускного клапана, $\phi_{\mathrm{a}}^{^{/}}$
25	Угол конца закрытия впускного клапана, $\varphi_{\rm a}^{^{/\!/}}$
26	Угол начала открытия выпускного клапана, $\varphi_{\rm b}^{/}$
27	Угол конца закрытия выпускного клапана, $\varphi_{\rm b}^{/\!/}$
28	Угол, при котором подается искра (топливо), φ_c^{\prime}

2 ТЕПЛОВОЙ РАСЧЕТ ДВИГАТЕЛЯ

На основании исходных данных, приведенных в таблице 1, производим следующие расчеты, предварительно занося их в табл. 2.

2.1 Параметры рабочего тела

2.1.1 Теоретически необходимое количество воздуха для сгорания 1 кг топлива:

$$L_0 = \frac{1}{0,208} \left(\frac{C}{12} + \frac{H}{4} - \frac{O}{32} \right),$$

кмоль воздуха/кг топлива:

$$\ell_0 = \mu_{\mathrm{B}} L_0$$
, кг воздуха/кг топлива.

2.1.2 Рассчитываем количество свежего заряда (воздуха):

$$M_0=lpha L_0$$
, кмоль воздуха /кг топлива.

2.1.3 Рассчитываем количество горючей смеси:

$$M_{_I}=lpha L_{_0}+rac{1}{\mu_{_T}},$$
 кмоль/кг.

2.2 Параметры отработавших газов

2.2.1 При α <1 количество отдельных компонентов продуктов сгорания в расчете на 1 кг топлива равно:

оксида углерода
$$M_{CO}=0.416rac{1-lpha}{1+k}L_{0}$$
, кмоль/кг;

углекислого газа
$$M_{CO_2} = \frac{C}{12} - M_{CO}$$
, кмоль/кг;

водорода
$$M_{H_2} = k M_{CO}$$
, кмоль/кг;

водяного пара
$${M}_{H_2O}=rac{H}{2}-{M}_{H_2}$$
, кмоль/кг;

азота $M_{N_2}=0,792\alpha L_0$, кмоль/кг;

кислорода $M_{O_2} = 0$,

где k- экспериментальный коэффициент, зависящий от отношения углерода C и водорода H в топливе, определяется по формуле:

$$k \approx 1.12 \sqrt{\frac{H}{C}}$$
.

2.2.2 При α ≥1 количество отдельных компонентов продуктов сгорания в расчете на 1 кг топлива:

оксида углерода $\boldsymbol{M}_{CO}=0$; углекислого газа $\boldsymbol{M}_{CO_2}=\frac{C}{12}$, кмоль; водорода

$$M_{H_2}=0$$
; водяного пара $M_{H_2O}=rac{H}{2}$, кмоль; азота $M_{N_2}=0.792 lpha L_0$, кмоль; кислорода $M_{O_2}=0.208(lpha-I)L_0$, кмоль.

2.2.3 Общее количество продуктов сгорания дизельного топлива и бензина:

$$\boldsymbol{M}_2 = \boldsymbol{M}_{CO} + \boldsymbol{M}_{CO_2} + \boldsymbol{M}_{H_2} + \boldsymbol{M}_{H_2O} + \boldsymbol{M}_{N_2} + \boldsymbol{M}_{O_2}$$
, кмоль/кг.

2.2.4 Коэффициент молекулярного изменения горючей смеси:

$$\mu_0 = \frac{M_2}{M_1}$$
; μ_o =1,02...1,06 – для дизелей, μ_o =1,02...1,12 – для бензиновых ДВС.

2.3 Расчет такта впуска (0 $\leq \phi \leq 180^{\circ}$)

2.3.1 Определяем потери давления во впускном тракте при впуске:

$$\Delta P_a = (\beta^2 + \xi) \frac{w_{\kappa \pi}^2}{2} \rho_0 \cdot 10^{-6}$$
, MIIa.

При расчете двигателя без наддува плотность воздуха равна:

$$\rho_0 = \frac{P_0}{R_B T_0} 10^6, \text{ KeV/m}^3.$$

Давление воздуха после турбокомпрессора:

$$P_{\kappa} = P_0 \pi_{\kappa}$$
, мПа.

При расчете двигателя с наддувом плотность воздуха после компрессора

равна:
$$\rho_k = \frac{P_k}{R_B \left(T_k - \Delta T_{oxn} \right)} 10^6$$
, кг/м³, и она используется при расчете ΔP_a .

Температура воздуха после турбокомпрессора

$$T_{\kappa} = T_0 \pi_{\kappa}^{\frac{n_{\kappa} - 1}{n_{\kappa}}}, K; \quad n_{k} = 1, 4 \div 1, 8.$$

Остальные параметры: $(\beta^2 + \xi), w_{\kappa_n}, T_0$ - заданы.

2.3.2 Рассчитываем давление в конце впуска в цилиндре двигателя:

без наддува
$$P_{\mathrm{a}}=P_{\mathrm{0}}-{\scriptstyle \Delta}P_{\mathrm{a}}$$
, МПа,

с наддувом
$$P_{
m a}=P_{\scriptscriptstyle K}-{\scriptscriptstyle \Delta} P_{
m a}$$
 , МПа.

2.3.3 Рассчитываем коэффициент остаточного газа в двигателе:

без наддува
$$\gamma_r = rac{\left(T_0 + {}_{\Delta}T
ight) arphi_{o^{\prime}} P_r}{T_r \left(arphi_{\mathrm{Д3}} arepsilon P_\mathrm{a} - arphi_{o^{\prime}} P_r
ight)},$$

с наддувом
$$\gamma_r = \frac{\left(T_{\kappa} + \Delta T - \Delta T_{\text{ОХЛ}}\right) \varphi_{\text{ОЧ}} P_r}{T_r \left(\varphi_{\text{дЗ}} \mathcal{E} P_{\text{a}} - \varphi_{\text{O4}} P_r\right)}.$$

Предварительно принимается $T_r = 600...900 \text{ K} -$ для дизелей с наддувом и без наддува, $T_r = 900...1100 \text{ K} -$ для бензиновых ДВС.

2.3.4 Определяем температуру в конце впуска в двигателе:

без наддува
$$T_a = \frac{T_0 + \Delta T + \gamma_r T_r}{1 + \gamma_r}$$
, К;

с наддувом
$$T_a = \frac{T_k + \Delta T - \Delta T_{\text{ОХЛ}} + \gamma_r T_r}{1 + \gamma_r}$$
, К.

2.3.5 Рассчитываем коэффициент наполнения двигателя:

без наддува
$$\eta_{_{V}}=rac{T_{0}ig(arphi_{\mathrm{ДO3}}arepsilon P_{a}-arphi_{\mathrm{O4}}P_{r}ig)}{ig(T_{0}+{}_{\Delta}Tig)ig(arepsilon-1ig)P_{0}},$$

с наддувом
$$\eta_{\scriptscriptstyle V} = \frac{T_{\scriptscriptstyle k} \left(\varphi_{\scriptscriptstyle {
m ДO3}} \varepsilon P_{\scriptscriptstyle a} - \varphi_{\scriptscriptstyle {
m OY}} P_{\scriptscriptstyle r} \right)}{\left(T_{\scriptscriptstyle k} + {\scriptscriptstyle \Delta} T - {\scriptscriptstyle \Delta} T_{\scriptscriptstyle {
m OXJI}} \right) \! \left(\varepsilon - 1 \right) P_{\scriptscriptstyle k}}.$$

2.4 Расчет такта сжатия (180° ≤ φ≤360°)

- 2.4.1 Давление в конце сжатия: $P_c = \varphi_{\text{доз}} P_{\text{a}} \cdot \mathcal{E}^{n_{\text{l}}}$, МПа,
- 2.4.2 Температура в конце сжатия: $T_c = T_{\rm a} \varepsilon^{n_{\rm l}-1}$ K,

$$t_c = T_c - 273$$
 °C,

где n_1 - показатель политропы сжатия.

2.4.3 Показатель политропы сжатия n_1 определяется по эмпирической зависимости:

для дизельных двигателей
$$n_1$$
=1,41- $\frac{5}{3 \cdot n_{_{\mathrm{HOM}}}}$ $-(0,01...0,02)$,

для бензиновых двигателей
$$n_1 = 1,41 - \frac{5}{3 \cdot n_{_{\text{HOM}}}}$$
,

где $n_{\text{ном}}$ — номинальная частота вращения коленчатого вала двигателя, $c^{\text{-}1}$.

Показатель политропы сжатия: для дизелей без наддува $n_1 = 1,34...1,42;$ для дизелей с наддувом $n_1 = 1,35...1,38;$ для бензиновых двигателей $n_1 = 1,30...1,39.$

2.5 Расчет участка подвода тепла

В результате расчета этого участка должны быть определены значения $T_{\rm z}$ и $P_{\rm z}$ после подвода тепла.

- 2.5.1Определение параметров процесса сгорания в дизельных двигателях.
- 2.5.1.1 Температура газов в конце процесса сгорания $t_{\rm z}$ определяется из уравнения сгорания:

$$(\mu C_{v_1} + 8,314\lambda_c)t_c + \frac{\xi \cdot H_H}{\alpha L_o \cdot (1+\gamma_r)} = \mu C_p' t_z \frac{\pi}{\mu}$$

2.5.1.2 Коэффициент действительного молекулярного изменения рабочей смеси определяется из уравнения:

$$\overline{\mu} = \frac{\mu_o + \gamma_r}{1 + \gamma_r}.$$

Для дизеля $\overline{\mu}=1,01...1,05$, т. е. число молей продуктов сгорания и остаточных газов до 5% больше числа молей свежего заряда и остаточных газов.

 $2.5.1.3 \ \ \, \mu C_{_{\nu_{_{\rm I}}}}\text{- средняя мольная теплоемкость свежего заряда, кДж/(кмоль град):}$

$$\mu C_{v_1} = \mu C_{v_0} + \alpha' t_c = 20,16 + 1,74 \cdot 10^{-3} t_c.$$

 $2.5.1.4~\mu C_p^{\prime}$ - средняя мольная теплоемкость продуктов сгорания дизельного топлива при постоянном давлении:

$$\mu C_p' = (\mu C_v' + 8,314).$$

2.5.1.5 Средняя мольная теплоемкость при постоянном объеме для продуктов сгорания жидкого (дизельного) топлива при температуре до 3000° С и $\alpha = 1,0...2,0$:

$$\mu C_{v}^{\prime} = \left(20, 2 + \frac{0.92}{\alpha}\right) + \left(\frac{13.8}{\alpha} + 15.5\right) 10^{-4} t_{z}.$$

В уравнении сгорания для дизелей ξ - коэффициент использования тепла принимается ξ =0,70÷0,90.

После определения t_z рассчитываем: $T_z = t_z + 273$, К.

Температура в конце процесса сгорания для автотракторных дизельных двигателей находится в пределах T_z = (1800...2500) K.

- 2.5.2 Определение параметров процесса сгорания в бензиновых и газовых двигателях.
 - 2.5.2.1 Уравнение сгорания для бензиновых двигателей имеет вид:

$$\mu C_{v_I} \cdot t_c + \xi \cdot \frac{H_{\text{\tiny H}} - \Delta H_{\text{\tiny H}}}{\alpha L_o (1 + \gamma_r)} = \mu C_v^{\prime} t_z \overline{\mu}.$$

2.5.2.2 μC_{v_I} - средняя мольная теплоемкость свежего заряда при постоянном объеме: $\mu C_{v_I} = (20,16+1,74\cdot10^{-3}\ t_c)$, кДж/(кмоль град).

 $2.5.2.3~\mu C_{v}^{\prime}$ - средняя мольная теплоемкость продуктов сгорания при α =0,8...1,0; определяется из выражения:

$$\mu C_{\nu}^{\prime} = (18,4+2,6\alpha) + (15,5+13,8\alpha)10^{-4}t_{z}$$
, кДж/(кмоль град).

Коэффициент использования тепла ξ принимается: для бензиновых двигателей $\xi = 0.85 \dots 0.95$.

Для и бензиновых двигателей $\overline{\mu}$ =1,02...1,12, определяется по п. 2.5.1.2.

 $2.5.2.4~\Delta H_{\rm H}$ - потери тепла в связи с неполнотой сгорания из-за недостатка кислорода определяются по уравнению:

$$\Delta H_{\text{H}} = 120 \cdot 10^3 (1-\alpha) L_0$$
, кДж/кг.

Все величины, входящие в уравнение сгорания, за исключением $\mu C_{\nu}^{'}$ и t_z , известны. Если обозначить левую (известную) часть уравнения через S' и подставить значение $\mu C_{\nu}^{'}$ из уравнения сгорания, получим:

$$t_z = rac{S^{\prime}}{\overline{\mu}ig(A^{\prime} + B^{\prime}t_zig)}, \,\,\,$$
°C, или $\,\overline{\mu}B^{\prime}t_z^2 + \overline{\mu}A^{\prime}t_z - S^{\prime} = 0$

(здесь
$$A'=18,4+2,6\alpha$$
; $B'=(15,5+13,8\alpha)10^{-4}$; $S'=\mu C_{v_1}t_c+\xi\frac{H_{\rm H}-\Delta H_{\rm H}}{\alpha L_0(1+\gamma_r)}$).

Решив квадратное уравнение, определим температуру в конце процесса сгорания t_z , которая для бензиновых ДВС в зависимости от сорта топлива, состава смеси, степени сжатия и других факторов находится в пределах $T_z = 2500...3000$ К.

2.5.2.5 Определим давление в цилиндре после подвода тепла по формуле:

$$P_{z} = \lambda_{\Gamma} P_{c}$$
, мПа,

где λ_{\varGamma} – степень повышения давления при подводе тепла.

Для дизелей с разделенными камерами сгорания (вихрекамерных и предкамерных) и дизелей с неразделенными камерами и пленочным смесеобразованием $\lambda_{\Gamma}=1,2...1,8$, для дизелей с разделенной камерой сгорания и объемным смесеобразованием $\lambda_{\Gamma}=1,6...2,5$.

Для бензиновых двигателей степень повышения давления рекомендуется принимать в пределах $\lambda_{\Gamma}=2,5...4,0$.

Величину степени повышения давления выбирают из условий экономичности и жесткости работы двигателя. При больших значениях λ_{Γ} двигатель будет работать более экономично, однако чрезмерное повышение λ_{Γ} увеличивает жесткость работы и, следовательно, износ деталей двигателя. В зависимости от коэффициента избытка α , тем выше λ_{Γ} .

2.6 Расчет такта расширения $(360^{\circ} \le \phi \le 540^{\circ})$

2.6.1 Для бензиновых двигателей давление и температура в конце расширения:

$$P_b = \frac{P_z}{\varepsilon^{n_2}}$$
, МПа; $T_b = \frac{T_z}{\varepsilon^{n_2-1}}$, К.

2.6.2 Показатель политропы расширения n_2 может быть определен по эмпирической зависимости:

для двигателей с искровым зажиганием
$$n_2 = 1,26 + \frac{5}{3n_{_{{\scriptsize HOM}}}},$$

для дизелей
$$n_2=1,22+\frac{13}{6n_{\text{ном}}}-0,02$$
.

В этих формулах $n_{\text{ном}}$ подставляется в \mathbf{c}^{-1} . Показатель политропы расширения для автотракторных дизелей находится в пределах n_2 =1,18...1,30. При

этом меньшие значения относятся к дизелям с более высокой степенью сжатия и большей быстроходностью.

Для дизельных двигателей определяем:

2.6.3 Степень предварительного расширения:

$$\rho = \frac{\overline{\mu}}{\lambda_{\rm r}} \frac{T_{\rm z}}{T_{\rm c}}.$$

2.6.4 Степень последующего расширения:

$$\delta = \frac{\varepsilon}{\rho}$$
.

2.6.5 Давление и температуру в конце расширения:

$$P_b = \frac{P_{\rm z}}{\delta^{n_2}}$$
, МПа,

$$T_b = \frac{T_z}{\delta^{n_2 - 1}}, \text{ K.}$$

2.7 Расчет такта выпуска (540°≤φ≤720°)

На данном такте $P_r \approx const$.

2.8 Индикаторные параметры рабочего цикла

2.8.1~Для бензинового двигателя, работающего по циклу V= const, теоретическое индикаторное давление, равно:

$$P_{\mathrm{i}}^{\prime} = \frac{P_{\mathrm{c}}}{\varepsilon - I} \left[\frac{\lambda_{\mathrm{\tilde{a}}}}{n_{2} - I} \left(I - \varepsilon^{I - n_{2}} \right) - \frac{I}{n_{1} - I} \left(I - \varepsilon^{1 - n_{1}} \right) \right], \text{ MIIa.}$$

2.8.2 Для дизельного двигателя, работающего по смешанному циклу, теоретическое среднее индикаторное давление равно:

$$P_{\mathbf{i}}^{\prime} = \frac{P_{c}}{\varepsilon - 1} \left[\frac{\lambda_{\mathbf{r}} \rho}{n_{2} - 1} \left(1 - \delta^{1 - n_{2}} \right) - \frac{1}{n_{1} - 1} \left(1 - \varepsilon^{1 - n_{1}} \right) + \lambda_{\mathbf{r}} \left(\rho - I \right) \right], \text{ MIIa.}$$

Действительное среднее индикаторное давление всех типов ДВС

$$P_{\rm i} = \bar{\varphi} P_{\rm i}^{\prime}$$

где $\overline{\varphi}$ - коэффициент, учитывающий «скругление» индикаторной диаграммы $(0.92 \le \overline{\varphi} \le 0.97)$.

2.8.3 Рассчитываем индикаторную мощность и индикаторный крутящий момент двигателя по формуле:

$$N_{\rm i} = \frac{P_{
m i} V_{
m h} i n_{_{HOM}}}{30\, au} = \frac{P_{
m i} V_{_{
m I}} n_{_{HOM}}}{120}, \; {
m \kappa BT}$$

(здесь
$$V_{_{\Pi}} = \frac{\pi D^2}{4} Si \cdot 10^3$$
, л);

$$M_{\rm i} = \frac{3N_{\rm i}}{\pi n_{_{HOM}}} 10^4, H \cdot M.$$

Значения D (м), S (м), i, $n_{\text{ном}}$ (об/мин), — заданы. Для четырехтактных двигателей коэффициент тактности i=4.

2.8.4 Определяем индикаторный КПД и удельный индикаторный расход топлива:

$$\eta_{\rm i} = \frac{P_{\rm i} \ l_0 \alpha}{H_{\rm H} \rho_{\rm k} \eta_{\rm v}};$$

$$g_{\rm i} = \frac{3600}{H_{\scriptscriptstyle \rm H} \eta_i}, \, {\rm f/kBty.}$$

Здесь $P_{\rm i}$ в МПа, $H_{\rm H}$ в МДж, $\eta_{\rm V}$ из п.2.3.5.

2.9 Эффективные параметры рабочего цикла

2.9.1 Рассчитываем среднее давление механических потерь (работу, затрачиваемую на трение и привод вспомогательных агрегатов, приходящуюся на единицу рабочего объема):

$$P_{\scriptscriptstyle \mathrm{M}} = A_{\scriptscriptstyle \mathrm{M}} + B_{\scriptscriptstyle \mathrm{M}} V_{\scriptscriptstyle \Pi.\mathrm{cp}}, \, \mathrm{M}\Pi\mathrm{a},$$

где $A_{\scriptscriptstyle M}$ и $B_{\scriptscriptstyle M}$ - коэффициенты (табл. 3), зависящие от числа цилиндров и от отношения хода поршня к диаметру цилиндра и типа камеры сгорания;

$$V_{\text{п.ср.}} = Sn_{\text{ном}}/30$$
- средняя скорость поршня, м/с.

Таблица 3 – Значения коэффициентов $A_{\scriptscriptstyle M}$ и $B_{\scriptscriptstyle M}$

Тип двигателя	$A_{\scriptscriptstyle M}$	Вм
Карбюраторный $\frac{S}{D} > 1$, $i \le 6$	0,049	0,0152
Карбюраторный $\frac{S}{D} < 1, i = 8$	0,039	0,0132
Карбюраторный $S/D \le 1$, $i \le 6$	0,034	0,0113
Четырехтактный дизель с неразделенными камерами	0,089	0,0118
Предкамерный дизель	0,103	0,0153
Дизель с вихревыми камерами	0,089	0,0135

2.9.2 Рассчитываем среднее эффективное давление (эффективную работу, снимаемую с единицы рабочего объема):

$$P_{\rm e} = P_{\rm i} - P_{\rm M}$$
, M Π a.

2.9.3 Рассчитываем механический кпд:

$$\eta_{\rm M} = \frac{P_{\rm e}}{P_{\rm i}} = 1 - \frac{P_{\rm M}}{P_{\rm i}}.$$

Его величина составляет: для бензиновых ДВС $\eta_{\scriptscriptstyle M}=0,70...0,85,$ для дизельных ДВС с наддувом $\eta_{\scriptscriptstyle M}\!\!=\!\!0,\!80...0,\!90,$ без наддува $\eta_{\scriptscriptstyle M}\!\!=\!\!0,\!70...0,\!82.$

2.9.4 Определяем эффективную мощность:

$$N_{\rm e} = \frac{P_{\rm e} V_{_{
m I}} n_{_{HOM}}}{120}, \, {
m \kappa Bt}.$$

2.9.5 Определяем эффективный кпд:

$$\eta_{\rm e} = \eta_{\rm i} \eta_{\rm m}$$
.

Для дизелей $\eta_e = 0.35...0.40$, для бензиновых двигателей $\eta_e = 0.18...0.30$.

2.9.6. Определяем эффективный удельный расход топлива по формуле:

$$g_{\rm e} = g_{e_N} = \frac{3600}{H_{_{
m H}} \eta_{_{
m P}}},$$
 г/кВтч.

Он составляет для бензиновых ДВС g_e =300...370 г/кВтч, для дизелей g_e =190...240 г/кВтч.

2.9.7 Эффективный крутящий момент:

$$M_{\rm e} = \frac{3}{\pi} \frac{N_{\rm e}}{n_{_{\rm HOM}}} 10^4$$
, Hm.

(здесь $n_{\text{ном}}$ подставляется в об/мин).

2.9.8 Расход топлива:

$$G_{_{\mathrm{T}}} = N_{_{\mathrm{e}}} g_{_{\mathrm{e}}} 10^{-3}$$
, кг/час.

2.9.9 Литровая мощность:

$$N_{_{
m II}}=rac{N_{
m e}}{V_{_{
m II}}}$$
, кВт/дм³.

2.10 Построение индикаторных диаграмм в координатах p_Γ -V

После определения параметров рабочего тела в характерных точках цикла строится теоретическая индикаторная диаграмма в координатах p_r -V. На оси абсцисс (рис. 1, 2) откладывается произвольный отрезок, изображающий в каком-либо масштабе объем камеры сжатия V_c . Этот отрезок принимается за единицу. Далее откладываются в принятом масштабе объемы:

$$V_{z} = \rho V_{c}$$
 и $V_{a} = \varepsilon V_{c} = V_{c} + V_{h}$.

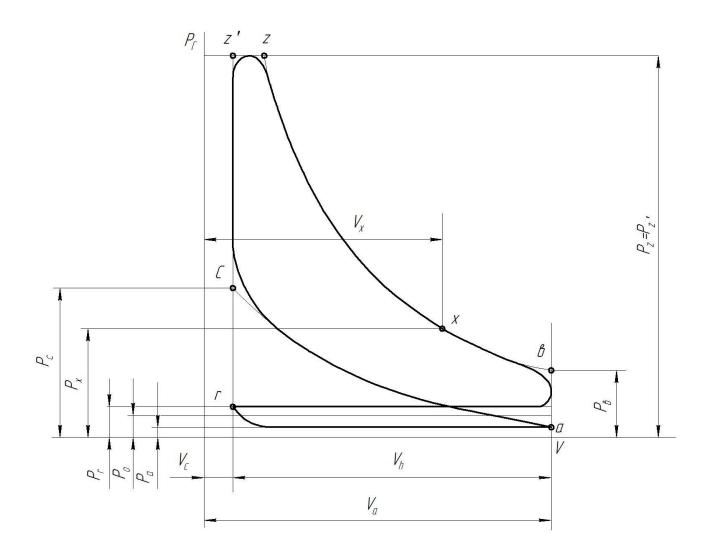


Рисунок 1 – Построение индикаторной диаграммы дизельного двигателя

Выбрав масштаб давления, на оси ординат откладывают величины p_0 , p_a , $p_z = p_z$, p_B и p_r . Обычно масштаб давлений выбирают так, чтобы высота диаграммы была больше длины в 1,2...1,5 раза. Можно рекомендовать масштаб объема из следующих соображений: абсолютное значение объема камеры сгорания V_C принять: 10 мм — для индикаторной диаграммы дизеля, 20 мм - для индикаторной диаграммы бензинового.

Через точки r, a, z' и z проводят прямые, параллельные оси абсцисс. Точки c и z', e и a соединяют прямыми, параллельными оси ординат. Точка a и c соединяются линией процесса политропы сжатия, а точки z и e - линией процесса политропы расширения.

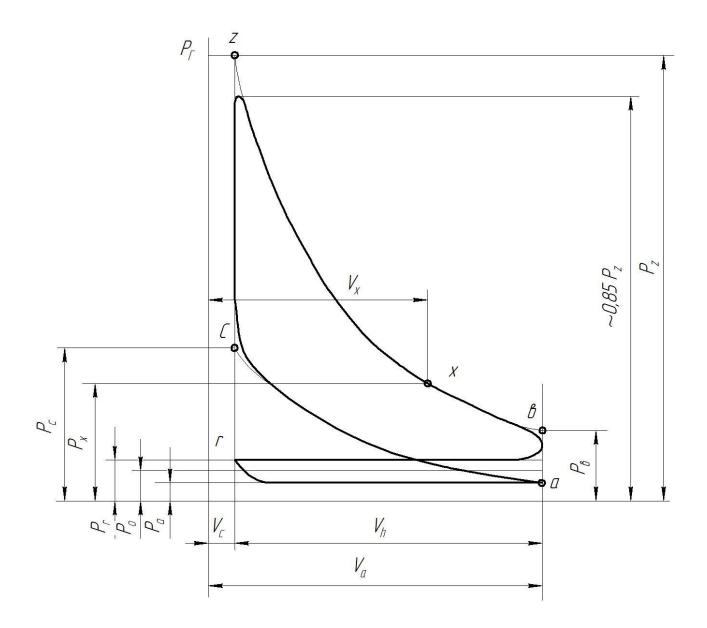


Рисунок 2 – Построение индикаторной диаграммы бензинового двигателя

Для построения линий процессов политропного сжатия a-c и расширения z-s необходимо определить давление в нескольких промежуточных точках между a и c, z и s. Для этого необходимо задаться несколькими промежуточными значениями объема V_x в названных интервалах.

Тогда давления для этих значений объемов составляют:

для процесса политропного сжатия
$$P_{x}=P_{a}{\left(rac{V_{a}}{V_{x}}
ight)}^{n_{1}}$$

а для процесса политропного расширения $P_{x^{'}} = P_{e} \bigg(rac{V_{e}}{V_{x}} \bigg)^{n_{2}}$.

Через точки a, c, z, θ и полученные промежуточные точки x проводят (с помощью лекала) плавные кривые.

Далее острые углы индикаторной диаграммы плавно округляют.

2.11 Тепловой баланс

- 2.11.1 Доля теплоты, затраченная на полезную работу, определена в тепловом расчете $\eta_{\rm e}$.
- 2.11.2 Доля теплоты, потерянная в бензиновых ДВС при α <1 из-за недогорания топлива:

$$\eta_{\Delta H_{\mathrm{H}}} = \frac{\Delta H_{\mathrm{H}}}{H_{\mathrm{H}}}.$$

2.11.3 Доля теплоты, унесенная с отработавшими газами:

$$\eta_{\text{orp.}\Gamma} = \frac{Q_{\text{orp.}\Gamma}}{H_{_{ ext{H}}}}.$$

Для бензиновых и дизельных двигателей:

$$Q_{\text{orp.}\Gamma} = M_2 I_{\alpha}^{\prime\prime} \Big|_{t_0}^{t_{\text{orp}}} - M_1 I_{\alpha \to \infty} \Big|_{0}^{t_a}.$$

Рассчитываем температуру отработавших газов:

$$t_{\text{orp}} = \frac{T_b}{n_2} \left[1 + \frac{P_r}{P_b} (n_2 - 1) \right] - 273, \text{ °C}.$$

Определяем энтальпию отработавших газов бензиновых двигателей при температурах $0...t_{\text{отр.r}}$:

$$I_{lpha}^{/\!/}\Big|_0^{t_{
m orp.r}} = U_{lpha}\Big|_0^{t_{
m orp.r}}$$
 +8,315 $t_{
m orp.r}$, кДж/кмоль.

Для определения $U_{\alpha}^{''}$ пользуются табл. 4.

Определяем энтальпию топливо – воздушной смеси в конце впуска:

$$I_{lpha o\infty}\left|_0^{t_{
m a}} = (20.6 + 2.638 \cdot 10^{-3}\,t_{
m a})t_{
m a} + 8.315 \cdot t_{
m a},$$
 кДж/кмоль.

Для дизелей определяем энтальпию отработавших газов по табл. 5 в соответствии с α и $t_{\text{отр.г.}}$ линейным интерполированием $I_{\alpha=}^{/\prime} \begin{vmatrix} t_{\text{отр.г.}} \\ t_0 \end{vmatrix}$, кДж/кмоль.

Таблица 4— Внутренняя энергия продуктов сгорания бензина $\operatorname{U}_{\alpha}^{/\prime}$, кДж/кмоль

α	Воздух	0,85	0,9	0,95	1	1,05	1,1
t _{orp.r}	$\alpha \rightarrow \infty$	0,03	0,9	0,93	1	1,05	1,1
0	0	0	0	0	0	0	0
100	2083,9	2225,7	2235,6	2244,8	2253	2245,7	2238,8
200	4197	4511,8	4535,2	4556,4	4577	45592	45443
300	6362,1	6885,3	6901,65	6951,9	6987,9	6960	6934,5
400	8590	9321,2	9380	9434,4	9484,8	9445,2	9408,4
500	10890,5	11753,5	11933,5	12007	12075	12022.5	11974
600	13254,6	14467,8	14570,4	14664	14751,6	14685	14623,8
700	15686,3	17166,1	17291	17407,6	17514,7	17433,5	17358,6
800	18171,2	19935,1	20085,6	20224	20352,8	20255,2	20166,4
900	20707,2	22773,6	22950	23112	23262.3	23148	23043,6
1000	23284	25668	25870	26056	26229	26098	25977
1100	25902,8	28716,6	28846,4	29056,5	29252,3	29102.7	28966,3
1200	28554	31618,8	31814,4	32109,6	32328	32160	32006,4
1300	31237,7	34660,6	34942,7	35204	35444,5	35257,3	35085,7
1400	33951,4	37742,6	38052	38339	38603,6	38396.4	38207,4
1500	36690	40860	41197,5	41509,5	41779	41571	41362,5
1600	39444,8	44001,6	44366,4	44705,6	45017,6	44737,6	44537,6
1700	42222,9	47176,7	475711	47934,9	48271,5	48001,2	47754,7
1800	45009	50369,4	50792,4	51181,2	51541,2	51251,4	50983,2
1900	47819,2	53589,5	54039,8	54455,9	54839,7	54526,2	54241,2
2000	50654	56826	57304	57746	58156	57820	57514
2100	53495,4	60087,3	60593,4	61061,7	61494,3	61137,3	60811,8
2200	56346,4	63366,6	63901,2	64394-	64851,6	64473,2	64125,6
2300	59215,8	66649,4	67212,9	67732,7	68213,4	67813,2	67445,2
2400	62090,4	69952,8	70545,6	71090,4	71596,8	71172	70785,6

Продолжение таблицы 4

2500	64982,5	73262,5	73882,5	74455	74982,5	74537,5	74130
2600	67912	76590,8	77235,6	77833,6	78387,4	77919,4	77490,4
2700	70875	79930,8	80605,8	81229,5	81804,6	81313,2	80865

Для дизельных двигателей рассчитываем энтальпию поступившей смеси:

$$I_{lpha o\infty}\left|_0^{t_a}
ight.=(20,6+2,638\cdot10^{-3}\,t_a)\;t_a,\,$$
кДж/кг.

Таблица 5 - Энтальпия продуктов сгорания дизельного топлива

$$I_{lpha=}^{\prime\prime}\Big|_{t_0}^{t_{
m orp.r}}$$
 , кДж/кмоль

α	Воздух	1.0	1.0	4.4	4.5	1.5	1.0	2.0
t _{отр.г}	$\alpha \rightarrow \infty$	1,2	1,3	1,4	1,5	1,6	1,8	2,0
0	0	0	0	0	0	0	0	0
100	2915,4	3059	3048,4	3039.3	3031,4	3024,4	3012,7	3003,2
200	5860	6183,4	6159,4	6137	6120,8	6105	6078,4	6057
300	8856,6	9391,8	9351,9	9318	9288,6	9262,5	9219	9184,5
400	11916	12682	12625,6	12577,2	12534,8	12498	12435,6	12385,2
500	15048	16063	5988,5	15924	15868	15818,5	15736	15669
600	18243,6	19526,4	19432,8	19351,2	19280,4	19218,6	19113,6	19029,6
700	21506,8	23074,1	22959,3	22859,9	22773,1	22696,8	22569,4	22466,5
800	24823,2	26692	26555,2	26436,8	26333,6	26242,4	26090,4	25967,2
900	28190,7	30378,6	30218,4	30079,8	29959,2	29853	29674,8	29521,8
1000	31599	34119	33935	33775	33636	33514	33308	33143
1100	35049,3	37912,6	37702,5	37521	37363,7	37224	36990,8	36802,7
1200	38532	41756,4	41521,2	41317,2	41138,4	40982,4	40719,6	40508,4
1300	42047,2	45639,1	45375,2	45149	44950	44775,9	44483,4	44248,1
1400	45592,4	49560	49268,8	49018,2	48798,4	48606,6	48283,2	48021,4
1500	491624	53512,5	53194,5	52920	52680	52468,5	52113	51828
1600	52748,8	57492,8	57144	56843,2	56582,4	56352	55964,8	55652,8
1700	56358,4	61502,6	61125,2	60798,8	60514,9	60265	59845,1	595084
1800	65376	65521,2	65120,4	64769,4	64461,6	64193,4	63739,8	63376,2
1900	63617,7	69578	69142,9	68764,8	68436,1	68147,3	67660,9	67269,5

Продолжение таблицы 5

						1		
2000	67284	73646	73180	72776	72426	72116	71596	71178
2100	70956,9	77737,8	77240	76811,7	76435,8	76169,1	75553,8	75108,6
2200	74639,4	81846,6	81318,6	80863,2	80465	80115,2	79527,8	79054,8
2300	78340,3	85955,6	85399	84916	84495,1	84124,8	83503,8	83004,7
2400	82046,4	90088,8	89498,4	88989,6	88548	88156,8	87501,6	86973,6
2500	85770	94225	93605	93070	92602	92192,5	91502	90947,5
2600	89531	98378,8	97726	97164,6-	96675,8	96244,2	95521,4	94936,4
2700	93325,5	102543,3	101862,9	101274,3	100761,3	100310,4	99554	98944,2
2800	97118	106719,2	106010,8	105394,8	104860	104386,8	103597,2	102958,8

2.11.4 Доля тепла, передаваемая охлаждающей среде:

$$\eta_{ ext{oxjl.}} = I - \left(\eta_{ ext{e}} + \eta_{\Delta H_{ ext{h}}} + \eta_{ ext{otp.r}}\right).$$

2.12 Скоростная характеристика двигателя

2.12.1 Для бензинового двигателя построение внешней скоростной характеристики ведется в интервале $n_{\min} < n_x < n_{\max}$, например, шагом 1000 мин⁻¹, где $n_{\min} = 600 \div 1000$ мин⁻¹; $n_{\max} = (1,05 \div 1,2) n_{\max}$ мин⁻¹, по следующим эмпирическим соотношениям:

мощность двигателя:

$$N_{\rm ex} = N_{\rm e} \frac{n_{_{\rm X}}}{n_{_{{
m HOM}}}} \left[1 + \frac{n_{_{\rm X}}}{n_{_{{
m HOM}}}} - \left(\frac{n_{_{\rm X}}}{n_{_{{
m HOM}}}} \right)^2 \right],$$
 kBt;

крутящий момент:

$$M_{\rm ex} = 3 \cdot 10^4 \frac{N_{\rm ex}}{\pi n_{\rm x}}$$
, Hm.

Среднее эффективное давление четырехтактного двигателя:

$$P_{\mathrm{ex}} = \frac{30\, au}{V_{\scriptscriptstyle \mathrm{u}} n_{\scriptscriptstyle \mathrm{v}}} N_{\mathrm{ex}}$$
, МПа.

Среднее давление механических потерь:

$$P_{\text{MX}} = A_{\text{M}} + B_{\text{M}} \frac{Sn_{x}}{30}$$
, M Π a.

Среднее индикаторное давление:

$$P_{\rm ix} = P_{\rm ex} + P_{\rm mx}$$
, МПа.

Удельный эффективный расход топлива:

$$g_{\rm e_x} = g_{\rm e_N} \left[1,2-1,2 \frac{n_{\rm x}}{n_{\rm Ne}} + \left(\frac{n_{\rm x}}{n_{\rm hom}} \right)^2 \right]$$
, г/кВтч.

Часовой расход топлива: $G_{_{\mathrm{TX}}} = g_{_{\mathrm{e}_{_{\mathrm{X}}}}} N_{_{\mathrm{ex}}} 10^{\text{--3}}$, кг/ч.

Полученные данные заносятся в табл. 6, по ним строится внешняя характеристика двигателя.

Таблица 6 – Результаты расчета внешней скоростной характеристики

<i>n_x</i> , об/мин	N_{ex} , к ${ m B}{ m T}$	M_{ex} , HM	<i>P</i> _{ex} , МПа	<i>P</i> _{мх} , МПа	<i>P</i> _{ix} , МПа	<i>ge</i> х₀ г/кВт·ч	$G_{\scriptscriptstyle extsf{TX}},$ кг/ч
$n_{\scriptscriptstyle ext{MUH}}$							
n_{hom}							
n_{max}							

2.12.2 Построение внешней скоростной характеристики дизельных двигателей ведется в интервале $n_{\min} \le n \le n_{\max}$, например, шагом 500 мин⁻¹, где $n_{\min} = 350 \div 600$ мин⁻¹; $n_{\max} = n_{\max}$ мин⁻¹, по следующим эмпирическим соотношениям.

Мощность двигателя для дизелей с неразделенными камерами сгорания:

$$N_{\rm ex} = N_{\rm e} \frac{n_{_{\rm X}}}{n_{_{{
m Hom}}}} \left[0.87 + 1.13 \frac{n_{_{\rm X}}}{n_{_{{
m Hom}}}} - \left(\frac{n_{_{\rm X}}}{n_{_{{
m Hom}}}} \right)^2 \right],$$
 кВт.

Мощность двигателя для дизелей с предкамерами:

$$N_{\rm ex} = N_{\rm e} \, \frac{n_{\rm x}}{n_{\rm Ne}} \Bigg[\, 0.6 + 1.4 \, \frac{n_{\rm x}}{n_{\rm hom}} - \left(\frac{n_{\rm x}}{n_{\rm Ne}} \right)^2 \, \Bigg], \, {
m KBt}.$$

Мощность двигателя для дизелей с вихревой камерой:

$$N_{\rm ex} = N_{\rm e} \frac{n_{\rm x}}{n_{\rm Ne}} \left[0.7 + 1.3 \frac{n_{\rm x}}{n_{\rm Ne}} - \left(\frac{n_{\rm x}}{n_{\rm hom}} \right)^2 \right]$$
, kBt.

Крутящий момент: $M_{\rm ex} = 3 \cdot 10^4 \, \frac{N_{\rm ex}}{\pi n_{\rm x}}$, Нм.

Среднее эффективное давление: $P_{\rm ex} = \frac{30\, au}{V_{_{\rm I}} n_{_{\rm X}}} N_{_{\rm ex}}$, МПа.

Среднее индикаторное давление: $P_{\text{ix}} = P_{\text{ex}} + P_{\text{mx}}$, МПа.

Среднее давление механических потерь: $P_{\text{мх}} = A_{\text{м}} + B_{\text{м}} \frac{Sn_{x}}{30}$,

Удельный эффективный расход топлива:

$$g_{\rm ex} = g_{\rm e} \left[1,55\text{-}1,55 \frac{n_{_{X}}}{n_{_{HOM}}} + \left(\frac{n_{_{X}}}{n_{_{HOM}}} \right)^2 \right]$$
, г/кВт.ч.

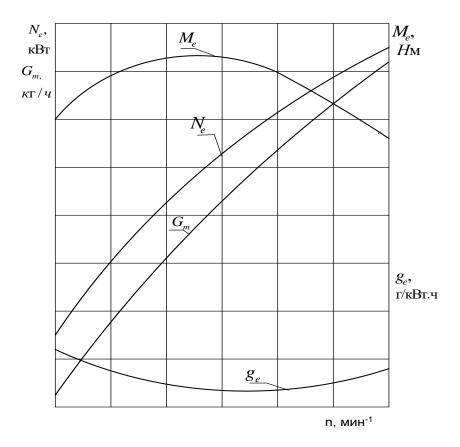


Рисунок 3 — Скоростная характеристика двигателя

Часовой расход топлива: $G_{\rm TX} = g_{\rm ex} N_{\rm ex} 10^{\text{--}3}$, кг/ч.

Полученные результаты заносятся в табл. 6. По табличным данным строится скоростная характеристика двигателя (рис. 3).

На скоростной характеристике необходимо выделить четыре характерных режима, соответствующие: максимальной частоте вращения (n_{max}); максимальной мощности ($n_{\text{ном}}$); максимальному крутящему моменту ($n_{\text{M}_{\text{e} \, \text{max}}}$); наименьшей устойчивой частоте вращения ($n_{\text{мin}}$).

3 ДИНАМИЧЕСКИЙ РАСЧЕТ

Динамический расчет двигателя производится на режиме максимальной мощности по результатам теплового расчета. В результате расчета необходимо определить следующие силы и моменты, действующие в кривошипношатунном механизме двигателя (рис. 4):

- избыточное давление газов над поршнем $\Delta p_{\scriptscriptstyle \Gamma}$, МПа;
- удельную суммарную силу, действующую на поршень P_{Σ} , МПа;
- удельную суммарную силу, воспринимаемую стенками цилиндра (нормальное давление) P_N , МПа;
- удельную силу инерции от возвратно-поступательно движущихся масс $P_{\rm j}$, МПа
- удельную силу, действующую вдоль шатуна P_s, МПа;
- удельную силу, действующую вдоль кривошипа P_k, МПа;
- удельную силу, направленную по касательной к окружности радиуса кривошипа P_{τ} , МПа;
- крутящий момент от одного цилиндра М_{кр}, Нм;
- крутящий момент от i цилиндров M_{Σ} , H_{M} ;
- удельную центробежную силу инерции от неуравновешенных вращающихся масс, сосредоточенных на радиусе кривошипа K_R, МПа;
- удельную силу, действующую на шатунную шейку $R_{\text{шш}}$, $M\Pi a$.

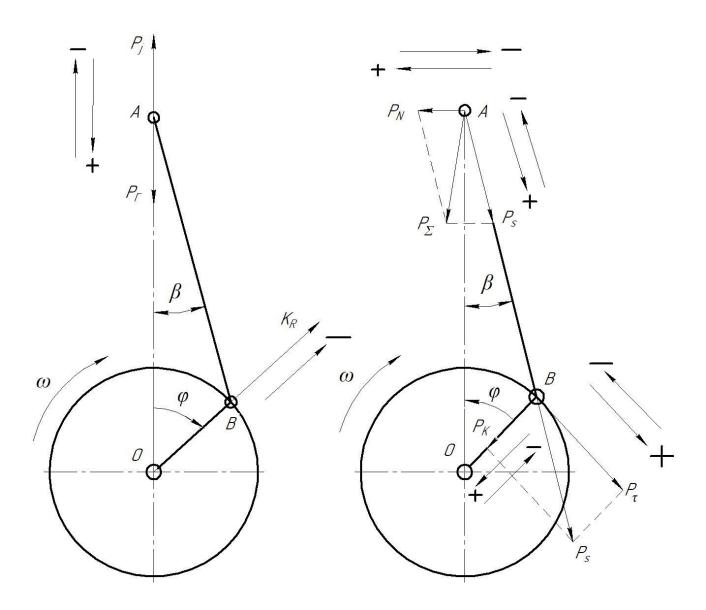


Рисунок 4 – Схема действия сил в кривошипно-шатунном механизме

Расчетные значения всех сил сводятся в табл. 7, на основании данных которых строятся графики (рис. 5, 6, 7, 8, 9, 10).

3.1 Расчет сил, действующих в КШМ

3.1.1 Построение развернутой индикаторной диаграммы в координатах $p_{\varGamma} - \varphi$

Перестроение индикаторной диаграммы в развернутую по углу поворота коленчатого вала обычно осуществляют по методу проф. Ф.А. Брикса. Для этого под индикаторной диаграммой строят вспомогательную полуокружность ра-

диуса R=S/2 (рис. 5). Далее от центра полуокружности (точка O) в сторону НМТ откладывают поправку Брикса, равную $R=\lambda/2$. Полуокружность делят лучами из центра O на несколько равных частей (например, через 30°), а из центра Брикса (точки O') проводят линии, параллельные этим лучам. Точки, полученные на полуокружности, соответствуют определенным углам φ поворота коленчатого вала. Из этих точек проводят вертикальные линии до пересечения с линиями индикаторной диаграммы (на рис. 5 показана только одна такая линия) и полученные величины давлений проецируют на вертикалях соответствующих углов φ развернутой диаграммы.

Развертку индикаторной диаграммы обычно начинают от ВМТ в процессе пуска. При этом следует учесть, что на свернутой индикаторной диаграмме давление отсчитывают от абсолютного нуля, а на развернутой показывается избыточное давление $\Delta P_{\Gamma} = P_{\Gamma} - P_{O}$, так как абсциссы их смещены по вертикали на величину P_{O} .

Из точки O_1 проводят ряд лучей (рекомендуется не менее 5) под углами $\alpha_1 = \alpha_2 = \alpha_3 = 30^\circ$...до пересечения с полуокружностью. Проекции концов этих лучей на линии процесса всасывания, сжатия, расширения и выпуска указывают, какие точки рабочего процесса соответствуют тем или иным углам поворота коленчатого вала. При построении развернутой индикаторной диаграммы после ее скругления определяются максимальные значения сил от давления газов P_Γ^{max} и результирующей силы $P_{\text{pes}}^{\text{max}}$.

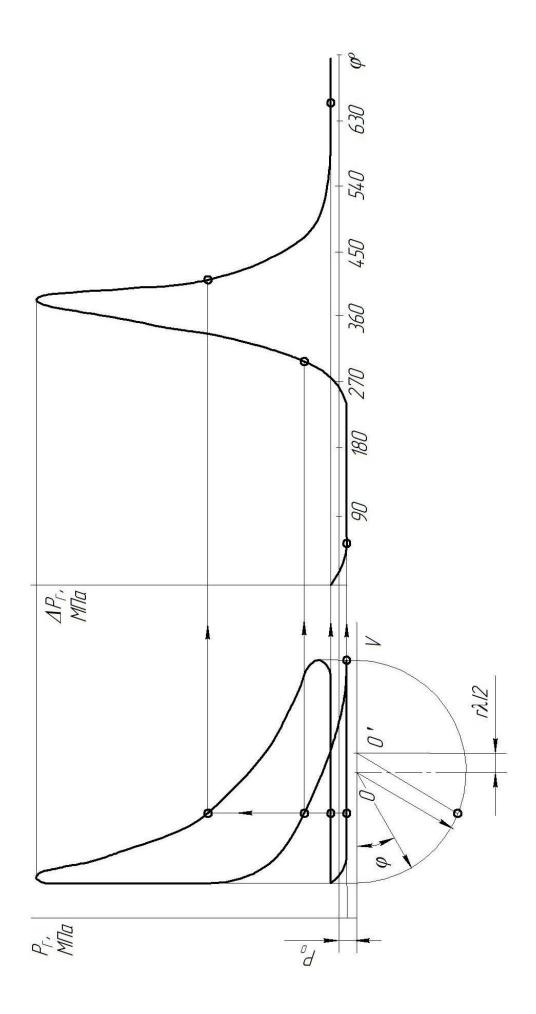


Рисунок 5 — Перестроение индикаторной диаграммы в координаты p_{r} - ϕ

Таблица 7 – Результаты динамического расчета

														,		,				,		, ,				
R _{шш} , МПа																										
Р _{кш} , МПа																										
К _к , МПа																										
М ^{кр,} Нм																										
Р _т , МПа																										
$\frac{\sin(\varphi+\beta)}{\cos\beta}$	табл.13																									
Р _К , МПа																										
$\frac{\cos(\varphi+\beta)}{\cos\beta}$	табл.12																									
Рs, МПа																										
1/cosβ	табл.11																									
Р _N , МПа																										
tgβ	табл.10																									
P _j , MIIa																										
P_{Σ} , MIIa																										
cosφ+ λcos2φ	табл.9																									
ΔР _Г , МПа																										
Рг, МПа	рис.5																									
ф, град	0	30	09	06	120	150	180	210	240	270	300	330	360	370	390	420	450	480	510	540	570	009	630	099	069	720

3.1.2 Заносим значения избыточного давления $\Delta P_{_{\Gamma}}$ газов над поршнем в табл. 7 с учетом принятого масштаба для $P_{_{\Gamma}}$.

$$\Delta P_{\scriptscriptstyle \Gamma} = P_{\scriptscriptstyle \Gamma} - P_{\scriptscriptstyle O}$$
, МПа.

3.1.3 Определяем удельное значение силы инерции от возвратно-поступательного движения масс поршневой группы:

$$P_{i} = -m_{i}^{\prime}\omega^{2}R(\cos\varphi + \lambda\cos2\varphi)10^{-6}$$
, МПа.

Здесь $m_j^\prime = m_\pi^\prime + 0,275 m_{\rm m}^\prime$ - определяется по статистическим данным (табл. 8), $\omega = \pi n_{\rm hom}/30$, R = S/2 - заданы, значения тригонометрической функции с учетом λ приведены в табл. 9.

Таблица 8 — Удельные конструктивные массы кривошипно-шатунного механизма

	I -	уктивные массы, /м ²
Элементы кривошипно-шатунного	бензиновых двига-	дизелей с диамет-
механизма	телей с диаметром	ром поршня
	поршня	D = (80120) MM
	D =(60100) мм	
Поршневая группа $\left(m_{_{\Pi}}^{'}=m_{_{\Pi}}/F_{_{\Pi}}\right)$:		
поршень из алюминиевого сплава	80150	150300
чугунный поршень	150250	250400
Шатун $\left(m_{_{\rm III}}^{/}=m_{_{\rm III}}/F_{_{\rm II}}\right)$	100200	250400
Неуравновешенные части одного колена		
вала без противовесов $m'_{\text{пип}} + 2m'_{\text{пцпр}}$:		
стальной кованый вал со сплошными		
шейками	150200	200400
чугунный литой вал с полыми шейками	100200	150300

Максимальное значение P_{jmax} — для двигателей с искровым зажиганием

 $n_{\text{ном}} \leq 4000 \text{ мин}^{-1}$ 1,4...1,8 МПа;

 $n_{\text{ном}} \ge 4000 \text{ мин}^{-1}$ 1,6...2,4 МПа;

- для дизелей при $n_{\mbox{\tiny HoM}} \geq 2000 \mbox{ мин}^{\mbox{\tiny -1}} \qquad 0,6...1,4 \mbox{ МПа}.$

Таблица 9 - Функция ($\cos \phi + \lambda \cos 2\phi$)

		Для значений λ											
$arphi^0$	Знак	1/3,4	1/3,5	1/3,6	1/3,7	1/3,8	1/3,9	1/4,0	1/4,1	1/4,2	1/4,3	1/4,4	$arphi^\circ$
0	+	1,294	1,286	1,278	1,270	1,263	1,256	1,250	1,244	1,238	1,233	1,227	360/720
10/370	+	1,261	1,253	1,246	1,239	1,232	1,226	1,220	1,214	1,208	1,203	1,198	350/710
20/380	+	1,165	1,159	1,152	1,147	1,141	1,136	1,131	1,126	1,122	1,118	1,114	340/700
30/390	+	1,013	1,009	1,005	1,001	0,998	0,994	0,991	0,988	0,985	0,982	0,980	330/690
40/400	+	0,818	0,816	0,814	0,813	0,812	0,811	0,809	0,808	0,807	0,806	0,805	320/680
50/410	+	0,592	0,593	0,594	0,596	0,597	0,598	0,599	0,600	0,601	0,602	0,603	310/670
60/420	+	0,353	0,357	0,361	0,365	0,368	0,372	0,375	0,378	0,381	0,384	0,386	300/660
70/430	+	0,117	0,123	0,129	0,135	0,140	0,146	0,150	0,155	0,160	0,164	0,168	290/650
80/440	-	0,103	0,095	0,087	0,080	0,074	0,067	0,061	0,055	0,050	0,045	0,040	280/640
90/450	-	0,294	0,286	0,278	0,270	0,263	0,256	0,250	0,244	0,238	0,233	0,227	270/630
100/460	-	0,450	0,442	0,435	0,428	0,421	0,415	0,409	0,403	0,397	0,392	0,387	260/620
110/470	-	0,567	0,561	0,555	0,549	0,544	0,538	0,533	0,529	0,524	0,520	0,516	250/610
120/480	-	0,647	0,643	0,639	0,635	0,633	0,628	0,625	0,622	0,619	0,616	0,614	240/600
130/490	-	0,694	0,692	0,691	0,690	0,688	0,687	0,686	0,685	0,684	0,683	0,682	230/590
140/500	-	0,715	0,716	0,718	0,719	0,720	0,721	0,723	0,724	0,725	0,726	0,726	220/580
150/510	ı	0,719	0,723	0,727	0,731	0,734	0,738	0,741	0,744	0,747	0,650	0,752	210/570
160/520	-	0,714	0,721	0,727	0,733	0,738	0,743	0,748	0,753	0,757	0,762	0,766	200/560
170/530	I	0,708	0,716	0,724	0,731	0,737	0,744	0750	0,756	0,761	0,766	0,771	190/550
180/540	-	0,706	0,714	0,722	0,730	0,737	0,744	0,750	0,756	0,762	0,767	0,773	180/540

- 3.1.4 Рассчитываем удельную суммарную силу, действующую вдоль оси цилиндра: $P_{\Sigma} = {}_{\Delta}\!P_{{}_{\Gamma}\!\varphi} + P_{j}$, МПа.
- 3.1.5 Определяем удельную суммарную силу, действующую на стенку цилиндра: $P_N = P_\Sigma t g \, eta$, МПа. Здесь $P_\Sigma = \Box P_{\Gamma lpha} + P_j$ удельная суммарная сила, действующая на поршневой палец.

Величина tg β приведена в табл. 10.

Таблица 10 — Тригонометрическая функция tg β

φ^0	Знак	0.24	0.27	1	ачений		0.20	0.20	0.21	Знак	$\mathbf{\phi}^0$
		0,24	0,25	0,26	0,27	0,28	0,29	0,30	0,31		
0	+	0	0	0	0	0	0	0	0	_	360
10	+	0,042	0,043	0,045	0,047	0,049	0,050	0,052	0,054	_	350
20	+	0,082	0,086	0,089	0,093	0,096	0,100	0,103	0,106	_	340
30	+	0,121	0,126	0,131	0.136	0,141	0,146	0,151	0,156	_	330
40	+	0,156	0,162	0,169	0,176	0,182	0,189	0,196	0,202	_	320
50	+	0,186	0,194	0,202	0,210	0,218	0,226	0,234	0,243	_	310
60	+	0,211	0,220	0,230	0,239	0,248	0,257	0,267	0,276	_	300
70	+	0,230	0,240	0,250	0,260	0,270	0,280	0,291	0,301	_	290
80	+	0,241	0,252	0,263	0,273	0,284	0,295	0,306	0,316	_	280
90	+	0,245	0,256	0,267	0,278	0,289	0,300	0,311	0,322	_	270
100	+	0,241	0,252	0,263	0,273	0,284	0,295	0,306	0,316	_	260
110	+	0,230	0,240	0,250	0,260	0,270	0,280	0,291	0,301	_	250
120	+	0,211	0,220	0,230	0,239	0,248	0,257	0,267	0,276	1	240
130	+	0,186	0,194	0,202	0,210	0,218	0,226	0,234	0,243	ĺ	230
140	+	0,156	0,162	0,169	0,176	0,182	0,189	0,196	0,202	1	220
150	+	0,121	0,126	0,131	0,136	0,141	0,146	0,151	0,156	_	210
160	+	0,082	0,086	0,089	0,093	0,096	0,100	0,103	0,106	1	200
170	+	0,042	0,043	0,045	0,047	0,049	0,050	0,052	0,054	_	190
180	+	0	0	0	0	0	0	0	0	_	180

3.1.6 Рассчитываем удельную суммарную силу, действующую вдоль шатуна:

$$P_{\rm S} = \frac{P_{\Sigma}}{\cos \beta}$$
, МПа.

Тригонометрическая функция приведена в табл 11.

Таблица 11 - Тригонометрическая функция $1/\cos \beta$.

φ°	211014			-	Для зна	чений /	ર			211014	$ec{arphi}^{\circ}$
Ψ	Знак	0,24	0,25	0,26	0,27	0,28	0,29	0,30	0,31	Знак	φ
0	+	1	1	1	1	1	1	1	1	+	360
10	+	1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,001	+	350
20	+	1,003	1,004	1,004	1,004	1,005	1,005	1,005	1,006	+	340
30	+	1,007	1,008	1,009	1,009	1,010	1,011	1,011	1,012	+	330
40	+	1,012	1,013	1,014	1,015	1,016	1,018	1,019	1,020	+	320
50	+	1,017	1,019	1,020	1,022	1,024	1,025	1,027	1,029	+	310
60	+	1,022	1,024	1,026	1,028	1,030	1,032	1,035	1,037	+	300
70	+	1,026	1,028	1,031	1,033	1,036	1,039	1,041	1,044	+	290
80	+	1,029	1,031	1,034	1,037	1,040	1,043	1,046	1,049	+	280
90	+	1,030	1,032	1,035	1,038	1,041	1,044	1,047	1,050	+	270
100	+	1,029	1,031	1,034	1,037	1,040	1,043	1,046	1,049	+	260
110	+	1,026	1,028	1,031	1,033	1,036	1,039	1,041	1,044	+	250
120	+	1,022	1,024	1,026	1,028	1,030	1,032	1,035	1,037	+	240
130	+	1,017	1,017	1,019	1,022	1,024	1,025	1,027	1,029	+	230
140	+	1,012	1,013	1,014	1,015	1,016	1,018	1,019	1,020	+	220
150	+	1,007	1,008	1,009	1,009	1,010	1,011	1,011	1,012	+	210
160	+	1,003	1,004	1,004	1,004	1,005	1,005	1,005	1,006	+	200
170	+	1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,001	+	190
180	+	1	1	1	1	1	1	1	1	+	180

3.1.7 Определяем удельную силу, действующую вдоль кривошипа:

$$P_{\scriptscriptstyle K} = P_{\scriptscriptstyle \Sigma} \, rac{cos(arphi+eta)}{coseta}$$
, МПа.

Тригонометрическая функция приведена в табл. 12.

Таблица 12 - Функция $(\cos(\varphi + \beta)/\cos\beta)$

$arphi^0$	Знак			Для зна	чений λ			Знак	$ \varphi^0 $
$ \varphi $	Jilak	1/3,4	1/3,6	1/3,8	1/4,0	1/4,2	1/4,2	Jilak	φ
0	+	1,0	1,0	1.0	1,0	1,0	1,0	+	360
10	+	0,9759	0,9764	0,9769	0,9763	0,9776	0,9800	+	350
20	+	0,9051	0,9070	0,9086	0,9103	0,9118	0,9100	+	340
30	+	0,7917	0,7958	0,7997	0,8030	0,8061	0,8070	+	330
40	+	0,6427	0,6494	0,6557	0,6614	0,6665	0,6720	+	320
50	+	0,4656	0,4760	0,4852	0,4933	0,5006	0,5025	+	310
60	+	0,2719	0,2859	0,2973	0,3079	0,3175	0,3240	+	300
70	+	0,0718	0,0879	0,1022	0,1149	0,1261	0,1340	+	290
80	-	0,1214	0,1069	0,0906	0,0765	0,0640	0,0507	-	280
90	-	0,3077	0,2891	0,2728	0,2582	0,2453	0,2340		270
100	_	0,4717	0,4537	0,4379	0,4238	0,4113	0,4040	-	260
110	-	0,6123	0,5961	0,5819	0,5691	0,5578	0,5560	-	250
120	-	0,7281	0,7146	0,7027	0,6921	0,6825	0,6635	-	240
130	-	0,8199	0,8096	0,8004	0,7923	0,7850	0,7820	-	230
140	_	0,8894	0,8827	0,8764	0,8707	0,8655	0,8650	-	220
150	_	0,9404	0,9362	0,9324	0,9290	0,9259	0,9250	-	210
160	_	0,9743	0,9723	0,9706	0,9630	0,9676	0,9655	-	200
170	-	0,9937	0,9932	0,9928	0,9924	0,9924	0,9920		190
180	-	1,0	1,0	1,0	1,0	1,0	1,0	-	180

3.1.8 Рассчитываем удельную суммарную силу, действующую по касательной к кривошипу:

$$\mathbf{P}_{ au} = \mathbf{P}_{\Sigma} \, rac{sin(arphi + eta)}{Coseta},$$
 МПа.

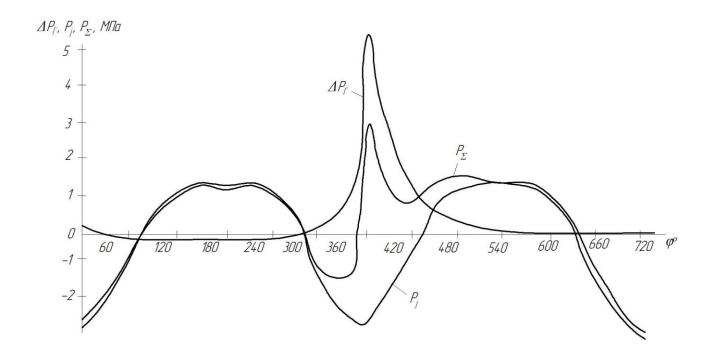


Рисунок 6 — Графики удельных сил $\Delta P_{\scriptscriptstyle \Gamma},\,P_{j},\,P_{\Sigma}$

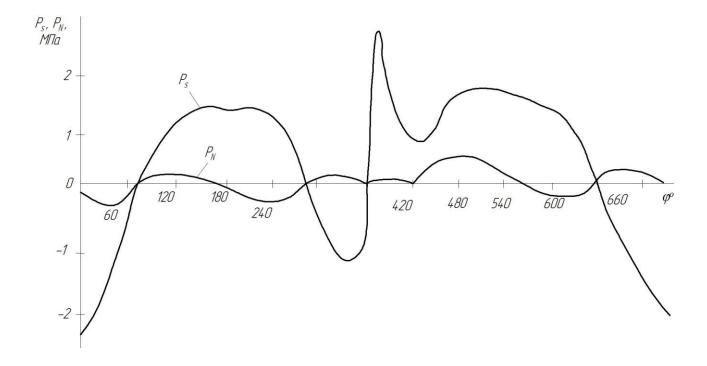


Рисунок 7 — Графики удельных сил $P_{\rm S},\,P_{\rm N}$

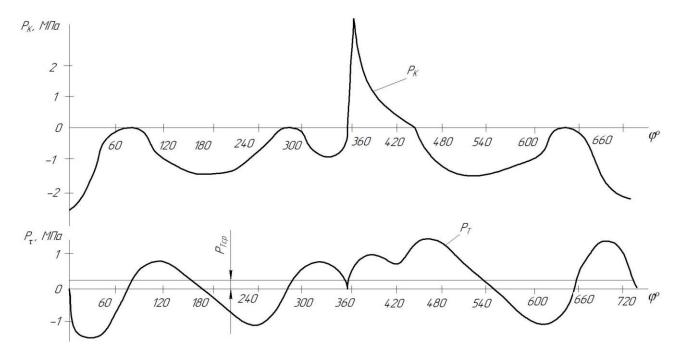


Рисунок 8 – Графики удельных сил P_K , P_{τ} .

3десь P_{Tcp} — средняя величина удельной касательной силы.

Величины тригонометрической функции приведены в табл. 13.

3.1.9 Определяем крутящий момент на коленчатом валу по формуле:

$$M_{\text{kp}} = P_{\tau} F_{\Pi} R \cdot 10^6, H \cdot M$$

(здесь $F_{\rm п} = \pi D^2/4$, м² – площадь поршня).

3.1.10 Определяем крутящие моменты от i цилиндра и суммарный крутящий момент M_{Σ} , пользуясь табл. 14 - для четырехцилиндрового двигателя, табл. 15 — для восьмицилиндрового двигателя и представим графически (рис. 9).

Таблица 13 - Функция $(\sin(\varphi + \beta)/\cos\beta)$

φ^0	2,,,,,,			Для зна	чений λ			2	$arphi^0$
φ^*	Знак	1/3,4	1/3,6	1/3,8	1/4,0	1/4,2	1/4,2	Знак	φ°
0	+	0	0	0	0	0	0	-	360
10	+	0,2240	0,2212	0,2187	0,2164	0,2144	0,2126	-	350
20	+	0,4370	0,4317	0,4269	0,4227	0,4187	0,4180	-	340
30	+	0,6288	0,6215	0,6150	0,6091	0,6083	0,6030	-	330
40	+	0,7903	0,7818	0,7743	0,7675	0,7614	0,7580	-	320
50	+	0,9147	0,9060	0,8983	0,8915	0,8854	0,8840	-	310
60	+	0,9977	0,9899	0,9831	0,9769	0,9714	0,9680	-	300
70	+	1,0381	1,0322	1,0270	1,0224	1,0182	1,0150	-	290
80	+	1,0374	1,0342	1,0314	1,0289	1,0267	1,0220	-	280
90	+	1,0	1,0	1,0	1,0	1,0	1,0	-	270
100	+	0,9323	0,9354	0,9382	0,9407	0,9429	0,9440	-	260
110	+	0,8413	0,8472	0,8524	0,8570	0,8611	0,8620	-	250
120	+	0,7343	0,7421	0,7490	0,7551	0,7607	0,7670	-	240
130	+	0,6174	06261	0,6337	0,6400	0,6476	0,6500	-	230
140	+	0,4953	0,3038	0,5183	0,5181	0,5242	0,5280	-	220
150	+	0,3713	0,3785	0,3851	0,3909	0,3962	0,3960	-	210
160	+	0,4270	0,2523	0,2571	0,2614	0,2653	0,2670	-	200
170	+	0,1233	0,1261	0,1286	0,1309	0,1329	0,1350	-	190
180	+	0	0	0	0	0	0	-	180

Таблица 14 — Результаты расчета суммарного крутящего момента четырехцилиндрового двигателя (порядок работы цилиндров 1342)

				Цили	ндры				
ф, град	1		2		3		4		M_{Σ} ,
ψ, Τρά	ϕ^{o}	M_{kpl} ,	$lpha^{ m o}$	M_{kp2} ,	$\alpha^{ m o}$	Мкр3,	$\alpha^{ m o}$	M_{kp4} ,	$H \cdot M$
		$H \cdot M$		$H \cdot M$		$H \cdot M$		$H \cdot M$	
0	0		540		180		360		
30	30		570		210		390		
60	60		600		240		420		
90	90		630		270		450		
120	120		660		300		480		
150	150		690		330		510		
180	180		720		360		540		

Таблица 15 — Результаты расчета суммарного крутящего момента восьмицилиндрового двигателя (порядок работы цилиндров 15326478)

	Цилиндры											M_{Σ}, H_{M}					
град		1		2		3		4		5		6		7		8	1412, H·M
φ,]	φ°	$M_{\kappa pl}$, $H \cdot M$	φ°	$M_{\text{kpl}},$ $H \cdot M$	φ°	M_{kpl} , $H \cdot M$											
0	0		270		180		450		90		360		540		630		
30	30		300		210		480		120		390		570		660		
60	60		330		240		510		150		420		600		690		
90	90		360		270		540		180		450		630		720		

Период изменения суммарного крутящего момента равен: $\theta = 720/i$.

$$M_{\kappa p1},~M_{\kappa p2},~M_{\kappa p3},~M_{\Sigma},~H^{\cdot}M$$

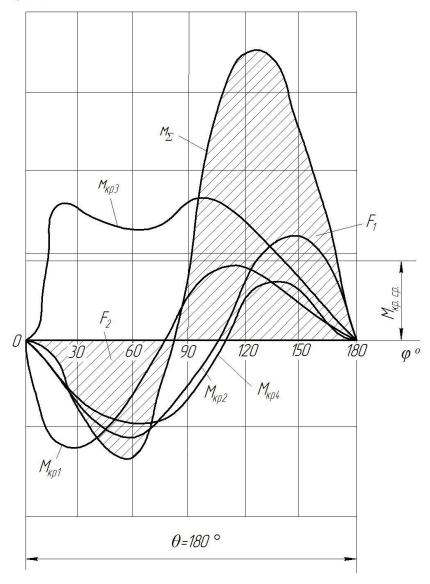


Рисунок 9 — Кривые крутящих моментов по каждому цилиндру и суммарного крутящего момента за период его изменения θ (для четырехцилиндрового двигателя)

3.1.11 После построения графиков сил и моментов по рис. 9 определяется средний индикаторный момент:

$$M_{\text{kp cp}} = \frac{\int_{0}^{\theta} M_{\Sigma} d\varphi}{\theta}, H \cdot M.$$

Приблизительно величина $M_{\rm kp\ cp}=rac{F_1-F_2}{l_{\rm a}}\,\mu,\ H\cdot {\it M}$. Здесь ${\rm F_1,\ F_2-}$ площа-

ди под кривой (мм²) суммарного крутящего момента (на рис. 9 они заштрихованы), расположенные над и под осью абсцисс соответственно; $l_{\rm д}$ — длина абсциссы (мм), соответствующая периоду изменения суммарного крутящего момента; μ - масштаб крутящего момента по оси ординат, $H \cdot M$ /мм.

3.1.12 Рассчитаем удельную центробежную силу инерции от вращающихся неуравновешенных масс, сосредоточенных на радиусе кривошипа:

$$K_R = -m_{\rm R}^{/} \omega^2 R \cdot 10^{-6}$$
, МПа,

где $m_{\rm R}^{/}=0,725m_{\rm m}^{/}+m_{\rm mm}^{/}+2m_{\rm m,np}^{/},\;m_{\rm m}^{/\prime}$ - из таблицы 8.

3.1.13 Рассчитаем силу, действующую на поверхность шатунной шейки:

$$R_{\text{min}} = \sqrt{P_{\text{T}}^2 - (P_{\text{k}} - K_{\text{R}}')^2}$$
, MIIa,

где $K'_R = 0,725m'_{\mu\nu}\omega^2 R$.

3.2 Построение развернутой диаграммы нагрузки

на поверхность шатунной шейки

В табл. 7 рассчитана сила $R_{\text{шш}}$, действующая на поверхность шатунной шейки, в зависимости от угла поворота кривошипа. Строим ее диаграмму (рис. 10) и определяем ее среднее значение $R_{\text{шш} cp}$.

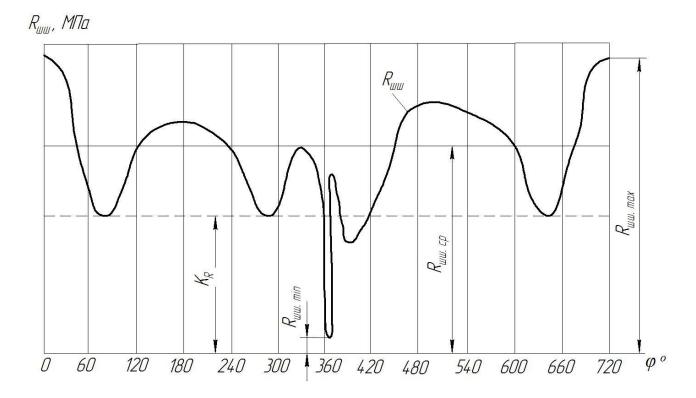


Рисунок 10 — Развернутая диаграмма сил, действующих на шатунную шейку $R_{\text{шш}}$

Среднее значение силы $R_{\text{шш}}$ ср можно определить, подсчитав площадь (мм²) между графиком $R_{\text{шш}}$ и осью абсцисс, разделив на длину диаграммы (мм). Полученная величина умножается на масштаб по оси ординат.

4 РАСЧЕТ ДЕТАЛЕЙ КШМ ДВИГАТЕЛЯ НА ПРОЧНОСТЬ

В курсовом проекте предусмотрен расчет на прочность четырех деталей: поршня, поршневого кольца, поршневого пальца и стержня шатуна. Все расчеты проводятся на основе данных теплового и динамического расчетов. Размеры элементов рассчитываемых деталей выбирают по статистическим данным, представленным в табл. 16.

Таблица 16 – Размеры деталей шатунно - поршневой группы

No	Параметры	Обозначение	Бензиновый двигатель	Дизель	
1	2	3	4	5	
1	Относительная толщина днища поршня	$\overline{\delta} = \delta/D$	0,050,1	0,150,2	
2	Относительная высота поршня	$\overline{H} = H/D$	0,81,3	1,31,7	
3	Относительная высота верхней части поршня	$\overline{h_1} = h/D$	0,450,75	0,61	
4	Относительная высота юбки поршня	$\overline{h}_{\scriptscriptstyle{\mathrm{IO}}} = h_{\scriptscriptstyle{\mathrm{IO}}}/D$	0,60,8	0,81,1	
5	Относительный диаметр бобышки	$\overline{d}_{\delta} = d_{\delta}/D$	0,30,5	0,30,5	
6	Относительное расстояние между бобышками	$\bar{b} = b/D$	0,30,5	0,30,5	
7	Толщина стенки юбки поршня	δ_{io} , mm	1,54,5	25	
8	Относительная толщина стенки головки поршня	$\bar{s} = s/D$	0,050,1	0,050,1	
9	Относительное расстояние до первой поршневой канавки	$\overline{e} = e/D$	0,060,12	0,110,2	
10	Относительная толщина первой кольцевой перемычки	$\overline{h_{_{\Pi}}} = h_{_{\Pi}}/D$	0,030,05	0,040,045	
11	Относительная радиальная толщина кольца: компрессионного маслосъемного		0,040,045 0,0380,043	0,040,045 0,0380,043	
12	Высота кольца	а, мм	24	35	
13	Относительная величина разно- сти между величинами зазоров замка кольца в свободном и ра- бочем состоянии	A_o/t	2,54	3,24	
14	Радиальный зазор кольца в канавке поршня: маслосъемного компрессионного	Δt, мм Δt, мм	0,91,1 0,70,95	0,91,1 0,70,95	
15	Относительный внутренний диа- метр поршня	$\overline{d_{i}} = d_{i}/D$	$1-2(\bar{s}+$	$\overline{t} + \Delta t/D$	
16	Относительный диаметр поршня по дну канавки	$\overline{d_{\rm k}} = d_{\rm k}/{\rm D}$	$1-2(\bar{t}\cdot$	$+\Delta t/D$	
17	Число масляных отверстий в поршне	n_{M}	612	612	
18	Диаметр масляного канала, отне- сенный к высоте кольца	$d_{_{\mathrm{M}}}/\mathrm{a}$	0,30,5	0,30,5	
	1	1		•	

19	Относительный наружный диаметр пальца	$\overline{d}_{\scriptscriptstyle \Pi} = d_{\scriptscriptstyle \Pi}/D$	0,220,28	0,30,38
20	Относительный внутренний диаметр пальца	$\overline{d_{\scriptscriptstyle \rm B}} = d_{\scriptscriptstyle \rm B}/d_{\scriptscriptstyle \rm II}$	0,650,75	0,520,7
21	Относительная длина пальца: закрепленного плавающего	$ar{l}_{\scriptscriptstyle \Pi} = l/D$ $ar{l}_{\scriptscriptstyle \Pi} = l_{\scriptscriptstyle \Pi}/D$	0,880,93 0,780,86	0,880,93 0,80,9
22	Относительная длина втулки поршневой головки шатуна: закрепленного пальца плавающего пальца	$\overline{l_{\scriptscriptstyle m II}}=l_{\scriptscriptstyle m III}/D$	0,280,32 0,330,45	0,280,32 0,330,45
23	Внутренний диаметр поршневой головки шатуна: без втулки с втулкой	d d	$d=d_{\Pi}$ (1,11,25) d_{Π}	$d=d_{\Pi}$ $(1,11,25)d_{\Pi}$
24	Наружный диаметр поршневой головки шатуна	$d_{\scriptscriptstyle \Gamma}$	$(1,251,65)d_{\Pi}$	$(1,31,7)d_{\Pi}$
25	Ширина шатуна в среднем сечении B – B (см. рис. 14)	$h_{ m III}$	$(1,21,4)h_{\text{Illmin}}$	$(1,21,4)h_{\text{Illimin}}$
26	Ширина шатуна в минимальном сечении	$h_{ m min}$	$(0,50,55)d_{\Gamma}$	$(0,50,55)d_{\scriptscriptstyle \Gamma}$
27	См. рис. 14	$b_{ m m}$	$(0,50,6)l_{\text{III}}$	$(0,550,6)l_{\text{III}}$
28	Длина поршневой головки шатуна: закрепленный палец плавающий палец	$l_{ m m}$	0,280,32) <i>D</i> (0,330,45) <i>D</i>	(0,280,32) <i>D</i> (0,330,45) <i>D</i>
29	См. рис. 14	$a_{\text{III}}=t_{\text{III}}$	(2,54) мм	(47,5) мм

4.1 Расчет поршня

4.1.1 Рассчитываем напряжение изгиба на днище поршня от газовой силы:

$$\sigma_{_{
m H3}} = P_{_{
m ZMAX}} {\left(rac{d_{_{
m i}}}{2\delta}
ight)}^2 = P_{_{
m ZMAX}} {\left(rac{\overline{d}_{_{
m i}}}{2\overline{\delta}}
ight)}^2$$
, МПа,

где $P_{\text{zмаx}}$ — максимальное давление газов (из табл. 7); $\overline{d_{\text{i}}}$ и $\overline{\delta}$ — параметры поршня (из табл. 16, обозначения параметров приведены на рис. 11);

$$\overline{d_i} = 1 - 2\left(\overline{s} + \overline{t} + \frac{\Delta t}{D}\right).$$

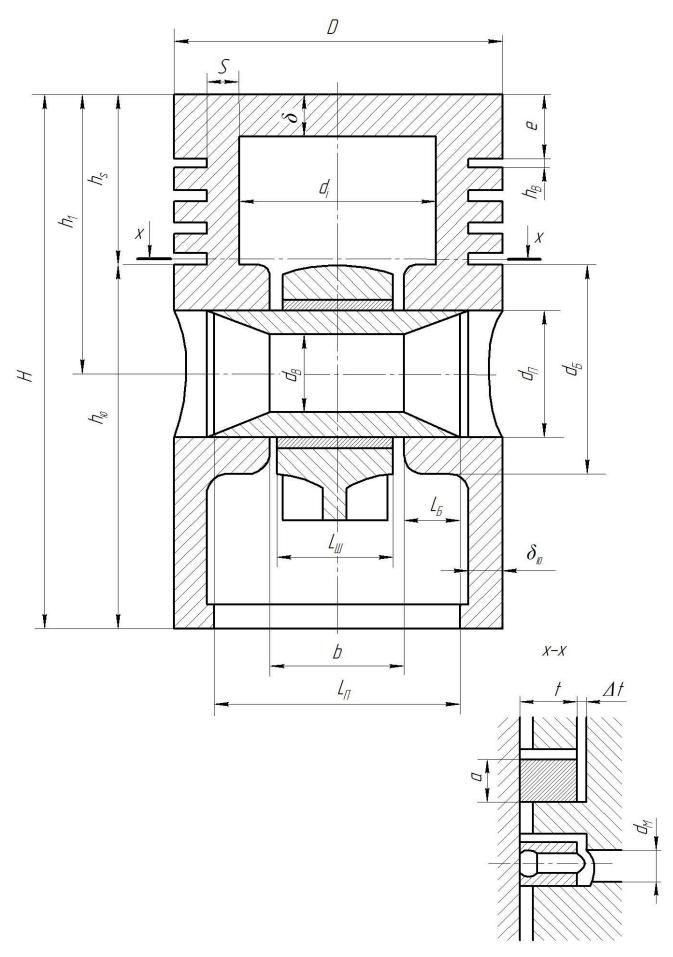


Рисунок 11 – Основные параметры поршня

Допустимые напряжения. Если днище не имеет усиливающих ребер жесткости, то для алюминиевых поршней: $[\sigma_{u_3}] = 20...25$ МПа, для чугунных - $[\sigma_{u_3}] = 40...45$ МПа. Если днище поршня имеет ребра, то для алюминиевых поршней: $[\sigma_{u_3}] = 50...150$ МПа, для чугунных - $[\sigma_{u_3}] = 80...200$ МПа.

4.1.2 Рассчитываем напряжение сжатия от газовых сил в сечении x-x (рис. 11), ослабленном маслоотводящими отверстиями:

$$\sigma_{
m cж} = P_{
m z_{max}} \, rac{\pi D^2}{4 F_{
m x-x}} = rac{P_{
m z_{max}}}{\overline{F}_{
m x-x}},$$
 МПа,

где F_{x-x} — площадь расчетного сечения поршня с учетом ослабления его отверстиями для отвода масла:

$$\overline{F}_{\text{x-x}} = \frac{\frac{\pi}{4} \left(d_{\text{k}}^2 - d_{\text{i}}^2 \right) - n_{\text{m}} F_{\text{otb}}}{\frac{\pi D^2}{4}} = \left(\overline{d}_{\text{k}}^2 - \overline{d}_{\text{i}}^2 \right) - \frac{2}{\pi} n_{\text{m}} \left(\overline{d}_{\text{k}} - \overline{d}_{\text{i}} \right) \overline{d}_{\text{m}},$$

где $F_{\mbox{\tiny OTB}} = rac{d_{\mbox{\tiny k}} - d_{\mbox{\tiny i}}}{2} d_{\mbox{\tiny M}}$ - площадь масляного канала;

$$\overline{d}_{
m k},\ \overline{d}_{
m i},\ n_{_{
m M}}$$
- из табл. 16;

$$\overline{d}_{\mathrm{M}} = \frac{d_{\mathrm{M}}}{D}$$
.

Следует обратить внимание, что в табл. 16 диаметр масляного отверстия представлен по отношению к высоте кольца «a». Допустимые напряжения сжатия: для алюминиевых сплавов [$\sigma_{cж}$] = 30...40 МПа; для чугуна [$\sigma_{cж}$] = 60...80 МПа; для стали [σ_{cw}] = 100...160 МПа.

4.1.3 Рассчитываем напряжение разрыва в сечении x-x от максимальной инерционной силы (при $\varphi=0$):

$$\sigma_{
m p} = -rac{P_{j_{
m xx}}}{F_{
m x-x}} = -rac{P_{j_{
m xx}}}{F_{
m x-x}} rac{\pi D^2}{4} = -rac{0.72 P_{j_{arphi=0}}}{\overline{F}_{
m x-x}},$$
 МПа,

где $P_{j_{xx}}$ - сила инерции от масс поршневой группы, расположенной выше сечения x-x: $P_i = -m_{xx}^/ \omega_{\max}^2 R (1+\lambda)$, МПа.

Учитывая статистические данные табл. 8, а также соотношения $m_{\rm xx}^{/}=0,5m_{\rm fl}^{/},~{\rm K}\Gamma/{\rm M}^2;~\omega_{\rm max}=1,2\omega_{_{HOM}},~{\rm получим}~P_{j_{\rm xx}}=0,72P_{j_{\varphi=0}},P_{j_{\varphi=0}}$ - в табл. 7; $\overline{F}_{\rm x-x}$ - рассчитано в п. 4.1.2.

Допустимые напряжения на разрыв: для алюминиевых сплавов $[\sigma_p] = 4...10 \text{ M}\Pi a$; для чугуна $[\sigma_p] = 8...10 \text{ M}\Pi a$.

4.1.4 Напряжение в верхней кольцевой перемычке

- напряжение среза:

$$au = 0,0314 P_{\mathrm{z}_{\mathrm{max}}} \, rac{D}{h_{\mathrm{r}}} = 0,0314 P_{\mathrm{z}_{\mathrm{max}}} \, rac{1}{\overline{h}_{\mathrm{r}}},$$
 МПа;

-напряжение изгиба:

$$\sigma_{_{\mathrm{H3}}} = 0,0045 P_{_{\mathrm{Z}_{\mathrm{max}}}} \left(\frac{D}{h_{_{\mathrm{II}}}} \right)^2 = 0,0045 P_{_{\mathrm{Z}_{\mathrm{max}}}} \left(\frac{1}{\overline{h}_{_{\mathrm{II}}}} \right)^2,$$
 МПа.

Сложное напряжение по третьей теории прочности:

$$\sigma_{\Sigma} = \sqrt{\sigma_{_{\rm M3}}^2 + 4\tau^2} = P_{_{\rm Z_{max}}} \sqrt{\left(\frac{0{,}0045}{\overline{h}_{_{\rm II}}^2}\right)^4 + 4\left(\frac{0{,}0314}{\overline{h}_{_{\rm II}}}\right)^2} \;, {\rm M\Pi a.}$$

Допустимые напряжения: для алюминиевых сплавов $[\sigma_{\Sigma}] = 30...40$ МПа; для чугуна $[\sigma_{\Sigma}] = 60...80$ МПа.

4.1.5 Удельное давление поршня, отнесенное к высоте юбки поршня:

$$q_1 = \frac{N_{\text{max}}}{h_{\text{io}}} = 0,785 \frac{P_{N_{\text{max}}}}{\overline{h}_{\text{io}}}, \text{ МПа.}$$

Удельное давление поршня, отнесенное ко всей высоте поршня:

$$q_2=rac{N_{
m max}}{H/D}=0.785rac{P_{N_{
m max}}}{\overline{H}_{
m Ho}}$$
, МПа, $P_{N_{
m max}}$ - из табл. 7.

Для известных конструкций двигателей величины q_1 и q_2 находятся в пределах: $q_1 = 0.33...0.96$ МПа, $q_2 = 0.22...0.42$ МПа.

4.2 Расчет поршневого кольца

4.2.1 Рассчитываем среднее давление на стенку цилиндра:

$$P_{
m cp} = 0,152E rac{A_0}{t \over \left(rac{D}{t}-1
ight)^3 rac{D}{t}} = 0,152E rac{A_0}{t \over \left(rac{1}{t}-1
ight)^3 rac{1}{t}},$$
 МПа.

Здесь E — модуль упругости: для серого чугуна $E=1\cdot 10^5$ МПа, для легированного чугуна $E=1,2\cdot 10^5$ МПа, для стали $E=(2...2,3)\cdot 10^5$ МПа, $\frac{A_0}{t}$ и $\frac{1}{t}$ из табл. 16.

Среднее радиальное давление для колец: компрессионных $P_{\rm cp}=0.11...0.37~{\rm M}$ Па; маслосъемных $P_{\rm cp}=0.2...0.4~{\rm M}$ Па.

4.2.2 Рассчитываем эпюру давления кольца в различных точках окружности:

$$P_{\rm w} = P_{\rm cn} \mu_{\rm K}$$
, МПа,

где $\mu_{\rm K}$ - коэффициент для различных углов ψ по окружности кольца. Результаты расчета сводятся в табл. 17.

Таблица 17 – Результаты расчета эпюры удельного давления кольца

ψ, град	0	30	60	90	120	150	180
$\mu_{\scriptscriptstyle \mathrm{K}}$	1,06	1,06	1,14	0,90	0,46	0,67	2,85
Р _ψ ,МПа							

По данным табл. 17 строим эпюру давлений кольца на стенку цилиндра (рис. 12).

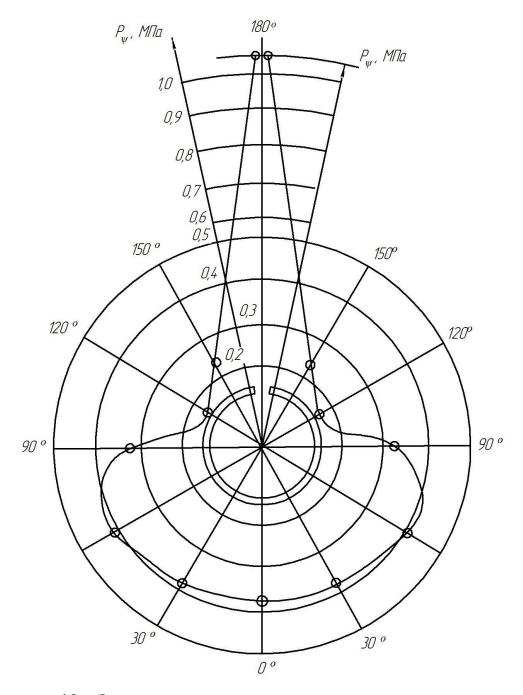


Рисунок 12 – Эпюра давления кольца на стенку цилиндра

4.2.3 Рассчитываем напряжение изгиба кольца в рабочем состоянии:

$$\sigma_{_{\mathrm{H3}_{1}}} = 2,61P_{\mathrm{cp}} \left(\frac{D}{t} - 1\right)^{2} = 2,61P_{cp} \left(\frac{1}{\overline{t}} - 1\right)^{2}, M\Pi a.$$

4.2.4 Рассчитываем напряжение изгиба при надевании кольца на поршень:

$$\sigma_{_{\mathrm{H3}_{2}}}=rac{4Eigg(1-0,144rac{A_{0}}{t}igg)}{migg(rac{1}{t}-1,4igg)rac{1}{t}},$$
 MПа,

где m = 1,57 — экспериментальный коэффициент, зависящий от способа надевания кольца.

Допустимое напряжение [$\sigma_{\text{из}}$] = 220...450 МПа.

4.3 Расчет поршневого пальца

4.3.1 Рассчитываем удельное давление пальца на втулку верхней головки шатуна:

$$q_{\text{min}} = \frac{P_{\text{zm}} \frac{\pi D^2}{4}}{l_{\text{m}} d_{\text{m}}} = 0.785 \frac{P_{\text{zm}}}{\overline{l_{\text{m}}} \overline{d}_{\text{m}}}, \text{M}\Pi a.$$

Здесь $l_{\rm m}$ и $d_{\rm n}$ из табл. 16.

$$P_{\scriptscriptstyle
m Z\Pi} = P_{\scriptscriptstyle
m Z} + k P_{{
m j} arphi=360},$$
 МПа,

где $P_{\rm z}$ и $P_{{\rm j}\phi=360}$ - из табл. 16;

k — коэффициент, учитывающий уменьшение инерционной силы за счет вычета массы поршневого пальца;

k = (0.76...0,86) для карбюраторных двигателей;

k = (0,68...0,81) для дизелей.

Для современных автомобильных двигателей $q_{\rm nn}$ =20...60 МПа.

4.3.2 Рассчитываем удельное давление пальца на бобышку:

$$q_{6} = \frac{P_{\text{zm}} \frac{\pi D^{2}}{4}}{d_{\text{m}} (l_{\text{m}} - b)} = 0.785 \frac{P_{\text{zm}}}{\overline{d_{\text{m}}} (\overline{l_{\text{m}}} - \overline{b})}, \text{ M}\Pi a.$$

Здесь \overline{d}_{Π} , \overline{l}_{Π} и \overline{b} из табл. 16.

Для современных автомобильных двигателей q_6 =15...50 МПа.

4.3.3 Напряжение от изгиба поршневого пальца:

$$\sigma_{_{\mathrm{H3}}} = \frac{P_{_{\mathrm{ZII}}} \frac{\pi D^{2}}{4} \left(l_{_{\mathrm{II}}} + 2b - 1, 5l_{_{\mathrm{III}}}\right)}{1, 2\left(1 - \alpha^{4}\right)d_{_{\mathrm{II}}}^{3}} = 0,654 \frac{P_{_{\mathrm{ZII}}} \left(\overline{l_{_{\mathrm{II}}}} + 2\overline{b} - 1, 5\overline{l_{_{\mathrm{III}}}}\right)}{\left(1 - \alpha^{4}\right)\overline{d}_{_{\mathrm{II}}}^{3}}, \mathrm{M\Pia}.$$

где $\alpha = d_{_{\rm B}}/d_{_{\rm II}}$ - отношение внутреннего диаметра пальца к наружному (из табл. 16).

4.3.4 Рассчитываем касательные напряжения от среза пальца в сечениях, расположенных между бобышками и головкой шатуна (см. рис. 11):

$$\tau = 0.85 \frac{P_{\rm zm} \frac{\pi D^2}{4} (1 + \alpha + \alpha^2)}{(1 - \alpha^4) d_{\rm m}^2} = 0.667 \frac{P_{\rm zm} (1 + \alpha + \alpha^2)}{(1 - \alpha^4) \overline{d}_{\rm m}^{-2}}, \text{ M}\Pi \text{a}.$$

Для поршневых пальцев современных автомобильных двигателей, изготовленных из легированных сталей 15X, 15XA, 12XH3A, 18X2H4MA, [τ] = 60...250 МПа, [$\sigma_{\text{\tiny HS}}$] = 100...250 МПа.

4.3.5 Рассчитываем увеличение горизонтального диаметра пальца в его средней части (овализации пальца).

$$\Delta_{_{\mathrm{I}_{\,\mathrm{max}}}} = \frac{1{,}35}{E} \frac{P_{_{\mathrm{ZI}}}}{l_{_{\mathrm{T}}}} \frac{\pi D^{^{2}}}{4} \left(\frac{1+\alpha}{1-\alpha}\right)^{3} \left[0{,}1{-}\left(\alpha{-}0{,}4\right)^{3}\right], \, \mathrm{mm};$$

$$\Delta_{\Pi_{\text{max}}} = \frac{1.06}{E} \frac{P_{\text{ZII}}}{\bar{l}_{\Pi}} \left(\frac{1+\alpha}{1-\alpha}\right)^{3} \left[0, 1-\left(\alpha-0,4\right)^{3}\right] D, \text{ MM}.$$

Здесь $E = (2...2,3) \cdot 10^5$ МПа; D- диаметр поршня в мм.

Значение $\Delta_{\Pi_{\max}}$ не должно быть больше 0,02...0,05 мм.

На основании результатов расчета необходимо дать заключение о прочности элементов поршневой группы.

4.4 Расчет стержня шатуна

4.4.1 Рассчитываем напряжение сжатия в сечении В-В (рис. 13) от сжимающей силы $P_{\rm cж.}$

С учетом потери устойчивости в плоскости качания шатуна:

$$\sigma_{\max_{\mathbf{x}}} = k_{\mathbf{x}} \frac{P_{\text{næ}}}{F_{\text{næ}}} = k_{\mathbf{x}} P_{\sum \max} \frac{F_{\mathbf{i}}}{F_{\text{næ}}} = k_{\mathbf{x}} P_{\sum \max} \frac{1}{\overline{F}_{\text{co}}}, \dot{\mathbf{I}} \ddot{\mathbf{i}} \dot{\mathbf{a}}$$

где $P_{\Sigma \max}$ -суммарная сила (из табл. 7):

$$F_{\rm cp} = h_{\rm \tiny III} b_{\rm \tiny III} - \left(b_{\rm \tiny III} - a_{\rm \tiny III}\right) \left(h_{\rm \tiny III} - 2t_{\rm \tiny III}\right), \, {\rm M}^2;$$

$$\overline{F}_{\,\tilde{\rm n}\tilde{\rm o}} = \frac{F_{\,\tilde{n}\tilde{\rm o}}}{\underline{\pi}D^2};$$

 $k_{\rm x}$ – коэффициент, учитывающий влияние продольного изгиба шатуна в плоскости качания шатуна.

Для современных автомобильных двигателей $k_x = 1,1 \div 1,15$.

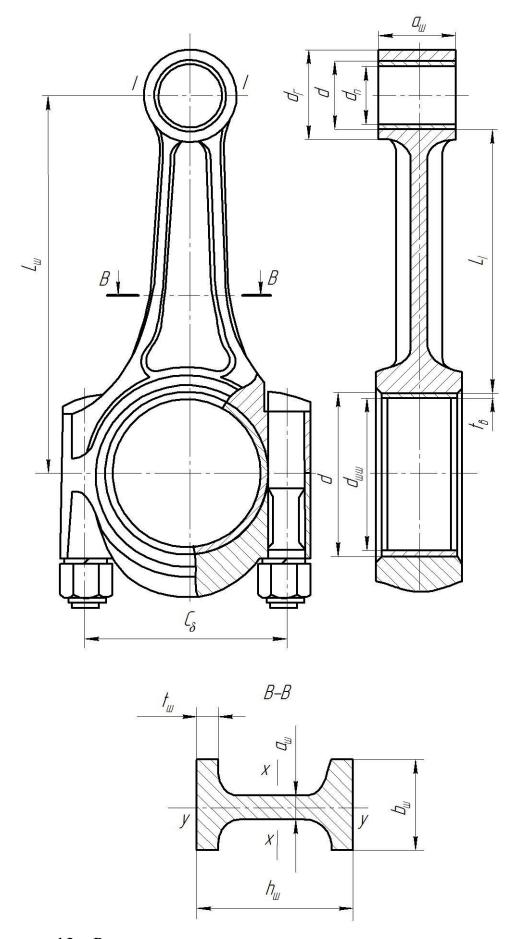


Рисунок 13 – Расчетная схема шатуна

4.4.2 Рассчитываем напряжение сжатия в сечении B-B от сжимающей силы $P_{\rm cж}$ в плоскости, перпендикулярной плоскости качания шатуна:

$$\sigma_{\text{max}_{y}} = k_{y} \frac{P_{\text{cm}}}{F_{\text{cp}}} = k_{y} P_{\Sigma \text{max}} \frac{F_{\Pi}}{F_{\text{cp}}} = k_{y} P_{\Sigma \text{max}} \frac{1}{\overline{F}_{\text{cp}}}, \text{ M}\Pi \text{a.}$$

Для современных автомобильных двигателей $k_y = 1,08 \div 1,1$.

4.4.3 Рассчитываем напряжение от действия растягивающей силы:

$$\sigma_{\min} = rac{P_{\mathrm{p}} rac{\pi D^2}{4}}{F_{cp}} = P_{\Sigma arphi = 0} rac{1}{\overline{F}_{cp}},$$
 МПа.

 $P_{\Sigma \phi=0}$ из табл. 7.

- 4.4.4 Рассчитываем средние значения напряжения цикла:
- в плоскости качания шатуна:

$$\sigma_{\mathrm{mx}} = \frac{\sigma_{\mathrm{max}_{\mathrm{x}}} + \sigma_{\mathrm{min}}}{2}, \mathrm{M}\Pi\mathrm{a};$$

- в плоскости, перпендикулярной плоскости качания шатуна:

$$\sigma_{
m my} = rac{\sigma_{
m max_y} + \sigma_{
m min}}{2},$$
 МПа.

- 4.4.5 Рассчитываем амплитуды напряжений цикла:
- в плоскости качания шатуна:

$$\sigma_{\rm ax} = \frac{\sigma_{{
m max}_x} - \sigma_{{
m min}}}{2}, {
m M\Pi a};$$

- в плоскости, перпендикулярной плоскости качания шатуна:

$$\sigma_{\mathrm{ay}} = \frac{\sigma_{\mathrm{max}_y} - \sigma_{\mathrm{min}}}{2}$$
, МПа.

- 4.4.6 Рассчитываем амплитуды цикла с учетом концентраций напряжений в зависимости от размера и способа обработки поверхности детали:
 - в плоскости качания шатуна

$$\sigma_{
m akx} = \sigma_{
m ax} \, rac{k_{\sigma}}{\mathcal{E}_{
m M} \mathcal{E}_{
m II}}, \, {
m M\Pia};$$

- в плоскости, перпендикулярной плоскости качания шатуна

$$\sigma_{
m aky} = \sigma_{
m ay} \, rac{k_\sigma}{\mathcal{E}_{
m M} \mathcal{E}_{
m II}}, \, {
m M\Pi a}.$$

Здесь $k_{\sigma} = 1,2+1,8\cdot10^{-4}\cdot(\sigma_{\rm B}-400)$ — коэффициент концентрации напряжений; $\sigma_{\rm B}$ — предел прочности материала шатуна; $\varepsilon_{\rm M}$ — коэффициент, учитывающий абсолютные размеры детали; $\varepsilon_{\rm II}$ — коэффициент, учитывающий способ обработки поверхности детали. $\sigma_{\rm B}$, $\varepsilon_{\rm M}$, $\varepsilon_{\rm II}$ — определяются по табл. 18, 19, 20, 21. Коэффициент $\varepsilon_{\rm M}$ выбираем: в плоскости качания — по $h_{\rm III}$, в плоскости, перпендикулярной плоскости качания — по $\theta_{\rm III}$. Материал шатуна бензиновых двигателей — 40Х, 40ХН, 45Г2; дизельных двигателей — 18Х2Н4МА, 40Х2Н2МА. Для стержня шатуна рекомендуется дробеструйная обработка.

- 4.4.7 Определяем запас прочности шатуна по пределу усталости:
- в плоскости качания шатуна:

$$n_{\sigma x} = \frac{\sigma_{-1p}}{\sigma_{akx} + \alpha_{\sigma} \sigma_{mx}},$$

- в плоскости, перпендикулярной плоскости качания шатуна:

$$n_{\text{oy}} = \frac{\sigma_{-1\text{p}}}{\sigma_{\text{akv}} + \alpha_{\sigma}\sigma_{\text{mv}}}.$$

Здесь α_{σ} - коэффициент приведения асимметрического цикла к равноопасному симметричному (табл. 22), $\sigma_{\text{-1p}}$ - предел выносливости материала (табл. 18, 19). Для шатунов автомобильных двигателей значения $n_{\sigma x}$ и $n_{\sigma y}$ не должны превышать 1,5.

Таблица 18 – Механические свойства углеродистых сталей

№	Марка стали	σ₅, МПа	$σ_{\scriptscriptstyle T}$, ΜΠα	σ ₋₁ , ΜΠα	σ _{-1p} , МПа	τ _т , ΜΠα	τ ₋₁ , МПа
1	10	320420	180	160	120150	140	80120
2	15	352450	200	170	120160	140	85130
3	20	400500	240	170220	120160	160	100130
4	20Γ	480580	480	250	180	170	90
5	25	430550	240	190	-	-	-
6	30	480600	280	200270	170210	170	110140
7	35	520650	300	220300	170220	190	130180
8	35Г2	680830	370	260	190	240	160
9	40	570700	310400	230320	180240	-	140190
10	40Γ	640760	360	250	180	210	150
11	45	600750	340	250340	190250	220	150200
12	45Γ2	700920	420	310400	210	260	180220
13	50	630800	350	270350	200260	-	160210
14	50Γ	650850	370	290360	-	-	-
15	60Γ	670870	340	250320	210	250	170
16	65	7501000	380	270360	220260	260	170120
17	65Γ	820920	400	300	220	260	180

Таблица 19 – Механические свойства легированных сталей

No	Марка	σ₃, МПа	σ₁, МПа	σ-1, МПа	σ _{-1p} ,	$\sigma_{\scriptscriptstyle m T},$	τ ₋₁ , ΜΠα
	стали	- Ву	- 1)	19	МПа	МПа	1,
1	20X	650850	400600	310380	230	260	230
2	30X	700900	600800	360	260	420	220
3	30XMA	950	750	470	ı	-	-
4	35X	950	750	-	-	-	-

5	35XMA	950	800	-	-	-	-
6	38XA	950	800	ı	ı	1	-
7	40X	7501050	650950	320480	240340	1	210260
8	40XH	10001450	8001300	460600	320240	390	240
9	45X	8501050	7001100	420640	270320	400	220300
10	50XH	1100	850	550	-	-	-
11	12XH3A	9501400	7001100	420640	270320	400	220300
12	18X2H4MA	1100	850	-	-	-	-
13	18XHBA	11501400	8501200	540620	360400	550	300360
14	25XHMA	1150	-	-	-	-	-
15	20XH3A	9501450	8501100	430650	310	-	240310
16	25XHBA	11001150	9501050	460540	310360	600	280310
17	30ХГСА	1100	850	510540	500530	1	220245
18	37XH3A	11501600	10001400	520700	-	-	320400
19	40X2H2MA	11501700	8501600	550700	-	700	300400

Таблица 20 — Значения коэффициентов $\varepsilon_{\text{п}\sigma}$ и $\varepsilon_{\text{п}\tau}$ для различных состояний поверхности

Вид обработки поверхности упрочнения	$\epsilon_{\Pi\sigma} \!$
Полирование без поверхностного упрочнения	1,0
Шлифование	0,970,85
Чистовое обтачивание	0,940,80
Грубое обтачивание	0,880,60
Без обработки и без поверхностного упрочнения	0,760,50
Обдувка дробью	1,12,0
Обкатка роликом	1,22,2
Цементация	1,22,5
Закалка	1,22,8
Азотирование	1,23,0

Примечание. При поверхностном упрочнении детали вид предварительной механической обработки не влияет на величину $\epsilon_{n\sigma}$ и $\epsilon_{n\tau}$. С увеличением коэффициента концентрации k_{σ} и с уменьшением размеров детали значения $\epsilon_{n\sigma}$ и $\epsilon_{n\tau}$ увеличиваются.

Таблица 21 — Значения масштабных коэффициентов $\varepsilon_{\text{мо}}$ и $\varepsilon_{\text{мт}}$ для деталей с различными размерами, изготовленных из конструкционных сталей

Разме детали,	1	10	1015	1520	2030	3040	4050	50100	100200
Мас- штабный	$\mathcal{E}_{ ext{M}\sigma}$	1,0	1,0 0,95	0,95 0,90	0,90 0,85	0,85 0,80	0,80 0,75	0,75 0,65	0,65 0,55
коэффи- циент	$\mathcal{E}_{ ext{M} au}$	1,0	1 0,94	0,94 0,88	0,88 0,83	0,83 0,78	0,76 0,72	0,72 0,60	0,60 0,50

Таблица 22 — Коэффициенты приведения асимметричного цикла к равноопасному симметричному для сталей с различными пределами прочности

No	Предел прочности $\sigma_{\scriptscriptstyle B},$ МПа	$И$ згиб $lpha_\sigma$	Растяжение — сжатие α_{σ}	Кручение $lpha_{ au}$
1	350-400	0,06-0,10	0,06-0,08	0
2	450-600	0,08-0,13	0,07-0,10	0
3	600-800	0,12-0,18	0,9-0,14	0-0,08
4	800-1000	0,16-0,22	0,12-0,17	0,06-0,10
5	1000-1200	0,20-0,24	0,16-0,20	0,8-0,16
6	1200-1400	0,22-0,25	0,16-0,23	0,10-0,18
7	1400-1600	0,25-0,30	0,23-0,25	0,16-0,20

5 РАСЧЕТ СИСТЕМ ДВИГАТЕЛЯ

5.1 Расчет системы смазки

На рис. 14 представлена принципиальная схема системы смазки двигателя, по которой необходимо ознакомиться с ее основными элементами и их назначением. В пояснительной записке следует привести схему системы смазки двигателя-прототипа. Затем произвести расчет циркуляционного расхода масла и мощности, затрачиваемой на привод масляного насоса.

5.1.1 Рассчитываем количество тепла, отводимого от двигателя маслом, учитывая, что в современных автомобильных и тракторных двигателях маслом

отводится 1,5...3 % от общего количества теплоты, введенной двигатель с топливом:

$$Q_{\rm i} = (0.015...0.03)G_{\rm o}H_{\rm i}$$
, кДж/с.

5.1.2 Рассчитываем циркуляционный расход масла. Массовый циркуляционный расход масла:

$$G_{\rm m} = \frac{Q_{\rm m}}{c_{\rm m} \Delta T_{\rm m}}, \ {\rm kg/c},$$

где $c_{\scriptscriptstyle M}$ - удельная теплоемкость масла ($c_{\scriptscriptstyle M}=2,094$ кДж / кг · K);

 ΔT_{M} – перепад температуры масла на выходе и входе в систему смазки двигателя ($\Delta T = 5...8$ град.).

5.1.3Рассчитываем стабилизационный расход масла:

$$G_{\scriptscriptstyle \mathrm{M}}^{\scriptscriptstyle /}=2G_{\scriptscriptstyle \mathrm{M}}$$
, kg/c.

5.1.4 Определяем расчетную производительность насоса с учетом утечек масла через радиальные и торцевые зазоры:

$$G_{\mathrm{p}}=rac{2G_{\mathrm{m}}}{\eta_{\mathrm{h}}}$$
, kg/c.

Здесь $\eta_{_{\mathrm{H}}}$ = (0,6...0,8) - кпд насоса.

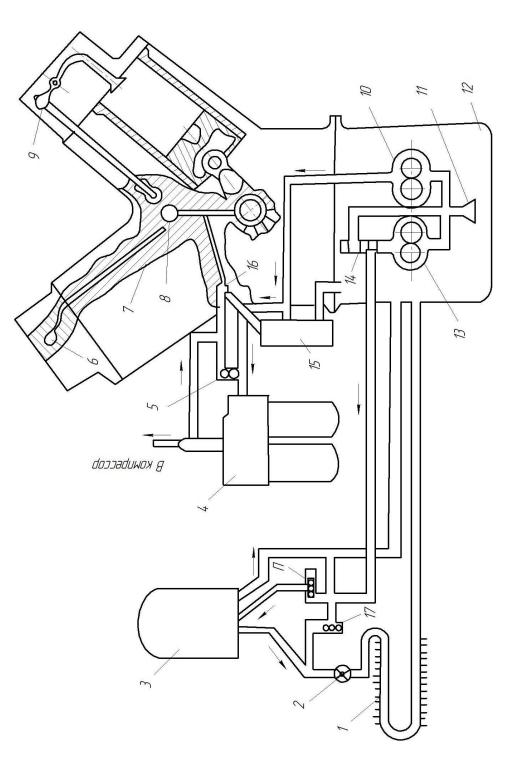


Рисунок 14 - Принципиальная схема системы смазки двигателя: 1- масляный радиатор; 2 – кран; 3 – ценраспределительный вал; 9 – втулки коромысел; 10 – рабочая секция масляного насоса; 11 – приемник; 12 – мастрифуга; 4 – масляный фильтр; 5 – перепускной клапан, 6 – ось коромысел; 7 – канал для смазки толкателя; 8 – ляный картер; 13 – радиаторная секция масляного насоса; 14 – редукционный клапан; 15 – дифференциальный редукционный клапан; 16 – главная магистраль; 17 – предохранительные клапаны

4.1.5 Рассчитываем мощность, затрачиваемую на привод масляного насо-

$$N_{_{
m MH}} = G_{_{
m p}} H_{_{
m M}} rac{1}{\eta_{_{
m Mex}}} = G_{_{
m p}} rac{\left(P_{_{
m 2}} - P_{_{
m 1}}
ight)}{
ho_{_{
m M}}} rac{1}{\eta_{_{
m Mex}}} = V_{_{
m p}} rac{P_{_{
m M}}}{\eta_{_{
m Mex}}} 10^3, \, {
m kBt},$$

где $H_{\rm M} = (P_2 - P_1)/\rho_{\rm M}$ - напор в масляном насосе.

Избыточное давление масла в системе:

для бензиновых двигателей $P_{\rm M} = P_2 - P_1 = 0,3...0,5,$ МПа;

для дизельных двигателей $P_{\rm M} = P_2 - P_1 = 0,3...0,07$, МПа;

где P_1 и P_2 – соответственно давление масла перед насосом и за насосом.

$$V_{
ho}=rac{G_{
m p}}{
ho_{_{
m M}}}$$
 - объемный расход масла, м $^3/{
m c};$

где $\rho_{\rm M}$ – плотность масла в системе ($\rho_{\rm M}$ = 900 кг/м³);

 $\eta_{\text{мех}} = 0.85...0.9$ — механический кпд насоса.

5.2 Расчет системы охлаждения

Необходимо ознакомиться с основными элементами системы охлаждения и их назначением (рис. 15). Затем произвести расчет циркуляционного расхода охлаждающей жидкости и мощности, затрачиваемой на привод насоса.

5.2.1 Рассчитываем количество тепла, отводимого от двигателя охлаждающей жидкостью: $Q_{\text{охл}} = \eta_{\text{охл}} G_{\text{\tiny T}} H_{_{\text{\tiny H}}}$, кДж/с,

где $\eta_{\text{охл}}$ – доля тепла, передаваемого охлаждающей жидкости;

 $G_{\rm T}$ – расход топлива, кг/с. (см. п. 2.9.8).

5.2.2 Рассчитываем циркуляционный расход жидкости в системе охлаждения:

$$G_{\text{\tiny M}} = \frac{Q_{\text{\tiny OXJI}}}{c_{\text{\tiny M}} \Delta T}, \text{kg/c},$$

где $c_{\text{ж}}$ — удельная теплоемкость охлаждающей жидкости (для воды $c_{\text{ж}} = 4,187$ кДж/кг·К, для антифриза $c_{\text{ж}} = 2,093$ кДж/кг·К); $\Delta T = 8...10$ град — перепад температуры охлаждающей жидкости на выходе и входе в двигатель.

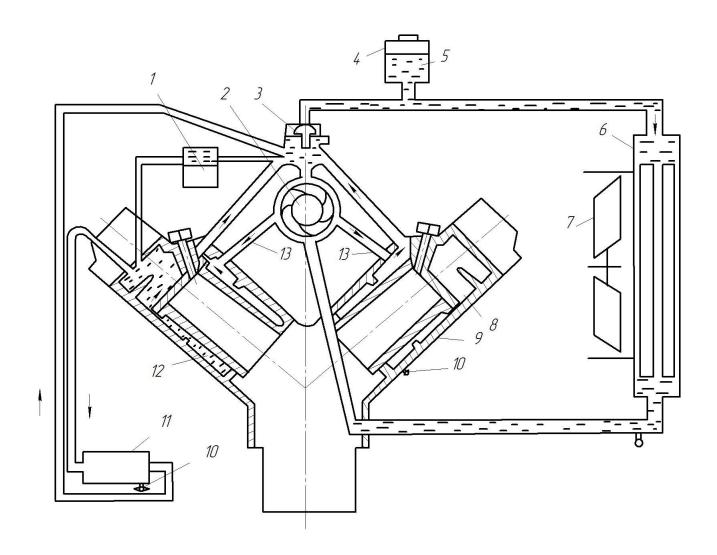


Рисунок 15 — Принципиальная схема системы охлаждения двигателя: 1 — воздушный компрессор; 2 — насос; 3 — термостат; 4 — заливная пробка; 5 - расширительный бачок; 6 — радиатор; 7 — вентилятор; 8 — полости рубашки охлаждения; 9 — поясок; 10 — сливные краны; 11 — подогреватель; 12 — область охлаждения; 13 - соединительные патрубки.

5.2.3 Рассчитываем производительность насоса:

$$G_{_{\mathtt{X}\mathtt{H}}}=rac{1}{\eta_{_{\mathtt{H}}}}G_{_{\mathtt{X}}},$$
 kg/c,

где $\eta_{\rm H} = 0,75...0,85$ — коэффициент подачи насоса.

5.2.4 Рассчитываем мощность, потребляемую насосом, задаваясь величиной напора:

$$H_{_{\mathrm{H}}} = \frac{\mathrm{P_2} - \mathrm{P_1}}{\rho_{_{\mathfrak{M}}}} 10^3 = \frac{\Box P}{\rho_{_{\mathfrak{M}C}}} 10^3,$$
кДж/кг,

где $\Delta P = (0.05...0.15)$ МПа – перепад давления на выходе и входе насоса;

 $ho_{\rm ж}-$ плотность охлаждающей жидкости (для воды $ho_{\rm ж}=1000$ кг/м³, для антифриза $ho_{\rm ж}=1075$ кг/м³).

$$N_{_{\mathrm{ЖH}}} = \frac{1}{\eta_{_{\mathrm{H}}}} G_{_{\mathrm{Ж}}} H_{_{H}} = V_{_{\mathcal{M}}} \frac{\Box P}{\eta_{_{H}}} 10^{3}, \mathrm{kBt},$$

где $\eta_{\rm M}$ = (0,8...0,85) – механический кпд насоса;

 $V_{\rm ж}$ – объемный расход охлаждающей жидкости, м³/с.

6 ГРАФИЧЕСКАЯ ЧАСТЬ КУРСОВОГО ПРОЕКТА

Графическая часть курсового проекта включает в себя иллюстрации результатов теплового и динамического расчетов (лист формата A1); схемы систем смазки и охлаждения двигателя — прототипа с расшифровкой составных частей (лист формата A1); компоновочный чертеж кривошипно-шатунного механизма в поперечном сечении (лист формата A1).

Иллюстрация результатов теплового и динамического расчетов содержит свернутую и развернутую индикаторные диаграммы, схему КШМ с приложенными силами, графики действующих сил и моментов.

Компоновка кривошипно-шатунного механизма осуществляется согласно исходным данным для курсового проекта и полученных результатов теплового, динамического расчетов и расчетов деталей на прочность.

При этом необходимо обратить особое внимание на взаимное сопряжение и взаимодействие деталей КШМ во всех кинематических положениях за полный оборот коленчатого вала. Для этого необходимо в масштабе представить компоновочный чертеж КШМ в крайних положениях за полный оборот коленчатого вала.

Все принятые технические решения в ходе компоновки обосновываются в тексте пояснительной записки.

Новые технические решения, принятые в ходе конструктивной разработки, приветствуются, учитываются при оценке курсового проекта.

7 ЗАЩИТА КУРСОВОГО ПРОЕКТА

Выполненный курсовой проект представляется студентом руководителю в установленные сроки для проверки, рецензирования и решения вопроса о допуске к защите. Проверенная работа возвращаются студенту для доработки, исправления сделанных замечаний и подготовки к защите.

Курсовой проект, выполненный небрежно, не в полном объеме, к защите не допускается.

При защите студент должен:

- 1. Сообщить цель, задачи и ход выполнения курсового проекта.
- 2. Коротко доложить основные параметры и конструктивные особенности работы.
- 3. Дать четкие ответы на вопросы, касающиеся протекания рабочих процессов, кинематики, динамики, конструкции и расчета двигателя, а также мотивов решений, принятых в ходе проектирования.
 - 4. Сделать выводы по итогам выполнения курсовой работы.
- 5. После защиты проекта пояснительная записка и графическая часть сдаются на кафедру.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Бейлин, В.И. Автомобильные двигатели. Контрольные задания и методические указания для студентов специальности 150200 Автомобили и автомобильное хозяйство /В.И. Бейлин, Е.В. Орловская. М.: изд-во МГОУ, 2002 93 с.
- 2. Двигатели внутреннего сгорания. В 3 кн. Кн. 1. Теория рабочих процессов: Учебник для вузов /В.Н.Луканин, И.В.Алексеев, М.Г.Шатров и др.; Под ред. В.Н. Луканина и М.Г. Шатрова. 2-е изд., перераб. и доп. М.: Высш. шк., 2005.- 392 с.
- 3. Двигатели внутреннего сгорания. В 3 кн. Кн 2. Динамика и конструирование: Учебник для вузов /В.Н.Луканин, И.В.Алексеев, М.Г.Шатров и др.; Под ред. В.Н. Луканина и М.Г. Шатрова. 2-е изд., перераб. и доп. М.: Высш. шк., 2005.- 400 с.
- 4. Двигатели внутреннего сгорания. В 3 кн. Кн 3. Компьютерный практикум. Моделирование процессов в ДВС: Учебник для вузов /В.Н.Луканин, И.В.Алексеев, М.Г.Шатров и др. / Под ред. В.Н. Луканина и М.Г. Шатрова. 2-е изд., перераб. и доп. М.: Высш. шк., 2005.- 414 с.
- 5. Двигатели внутреннего сгорания: Учеб. Для вузов по спец. «Строительные и дорожные машины и оборудование /Хагиян А.С., Морозов К.А., Луканин В.Н. и др.; Под ред. В.Н. Лукина. 2-е изд., перераб. и доп. М.: Высш. шк., 1985. 311 с.
- 6. Двигатели внутреннего сгорания. Динамика и конструирование / Под ред. В.Н. Луканина, М.Г. Шатрова. М.: Высшая школа, 2005. 400 с.
- 7. Двигатели внутреннего сгорания. Системы поршневых и комбинированных двигателей /Под ред. А.С. Орлина, М.Г. Круглова. М.: Машиностроение, 1985.-456 с.
- 8. Колчин, А.И. Расчет автомобильных и тракторных двигателей. Изд. 4-е / А.И. Колчин, В.П. Демидов. М.: Высшая школа, 1980. 400 с.

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
1 ЗАДАНИЕ НА КУРСОВОЕ ПРОЕКТИРОВАНИЕ	4
1.1 Справочные данные и принятые обозначения	5
2 ТЕПЛОВОЙ РАСЧЕТ ДВИГАТЕЛЯ	10
2.1 Параметры рабочего тела	10
2.2 Параметры отработавших газов	10
2.3 Расчет такта впуска (0 ≤ φ ≤ 180°)	11
2.4 Расчет такта сжатия (180° ≤ φ≤360°)	13
2.5 Расчет участка подвода тепла	13
2.6 Расчет такта расширения $(360^{\circ} \le \phi \le 540^{\circ})$	16
2.7 Расчет такта выпуска (540°≤φ≤720°)	17
2.8 Индикаторные параметры рабочего цикла	17
2.9 Эффективные параметры рабочего цикла	18
2.10 Построение индикаторных диаграмм в координатах p_{Γ} -V	20
2.11 Тепловой баланс	23
2.12 Скоростная характеристика двигателя	26
3 ДИНАМИЧЕСКИЙ РАСЧЕТ	29
3.1 Расчет сил, действующих в КШМ	31
3.2 Построение развернутой диаграммы нагрузки на поверхность	
шатунной шейки	44
4 РАСЧЕТ ДЕТАЛЕЙ КШМ ДВИГАТЕЛЯ НА ПРОЧНОСТЬ	45
4.1 Расчет поршня	47
4.2 Расчет поршневого кольца	51
4.3 Расчет поршневого пальца	53
4.4 Расчет стержня шатуна	55
5 РАСЧЕТ СИСТЕМ ДВИГАТЕЛЯ	61
5.1 Расчет системы смазки	61
5.2 Расчет системы охлаждения	64

6 ГРАФИЧЕСКАЯ ЧАСТЬ КУРСОВОГО ПРОЕІ	KTA66
7 ЗАЩИТА КУРСОВОГО ПРОЕКТА	67
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	68